Riverbed evolution and its influencing factors in the South Branch and the North Branch of the Yangtze River estuary since 1958
-
摘要: 根据1958—2019年长江口实测地形数据,对南、北支河段河床边界、河槽容积和河床冲淤等河床演变要素进行了计算分析。结果表明,从1958年至2019年,南、北支河段河床演变具有一定规律性:(1)岸线边界变化趋势表现共性,均遵循岸线内缩延展,河道面积逐渐缩小的变化规律。(2)冲淤演变差异明显,南支时间上整体趋于冲刷,分阶段冲淤交替,1998至2019年表现为持续冲刷;空间上整体表现为滩淤槽刷的特点。北支则整体趋于淤积,河道不断萎缩。(3)河槽容积变化表现一定相关性,2 m以深南、北支河槽总容积在84.76亿m3上下小幅波动,基本维持稳定,2019年比1958年仅增加4.1%。南、北支河段的河床演变受径流和外海水沙变化及人类工程活动综合影响,随着南、北支河段断面形态、滩槽格局及流域来沙的渐趋稳定,河床演变整体向平衡稳定方向发展。Abstract: Based on the measured topographic data of the Yangtze River estuary from 1958 to 2019, these factors such as riverbed boundary, channel volume and riverbed evolution of the South Branch and the North Branch are calculated. The results show that the riverbed evolution of the South Branch and the North Branch has a certain regularity from 1958 to 2019: (1) The change of riverbed boundary shows the same trend, which follows shoreline shrinking and extending, and the river area gradually shrinking. (2) The riverbed evolution between the North Branch and the South Branch shows obvious differences. The time variation of the South Branch tends to scour as a whole with alternating between erosion and deposition and shows continuous scour since 1998, and the spatial change shows the characteristics of "beach and silting channel brush". But the North Branch tends to deposit as a whole and the river channel shrinks. (3) The change of channel volume shows a certain relativity. The total volume of the South Branch and the North Branch with +2 m deep fluctuates slightly around 8.476 billion m3, which remains stable basically. Compared with 1958, the total volume in 2019 is only increased by 4.1%. The riverbed evolution of the South Branch and the North Branch is affected by water and sediment dynamic conditions and human engineering. With the stability of cross-section shape, shoal channel pattern and sediment inflow in the South Branch and the North Branch, their riverbed evolution tends to be balanced and stable as a whole.
-
Key words:
- Yangtze River estuary /
- water-sand conditions /
- channel volume /
- human activities
-
表 1 实测数据来源
Table 1. Sources of measured data
获取方式 年份 比例尺 测量时间 测量单位 海图 1958 1∶25 000 1958.8—1958.10 海军司令部
航道测量部1973 1∶50 000 1973.3—1973.11 上海航道局 1989 1∶75 000 1989 交通部上海海上
安全监督局电子海图 1998 1∶50 000 1998.6 长江口航
道管理局2010 1∶50 000 2010 2016 1∶50 000 2016.11 2019 1∶50 000 2019.11 表 2 岸线及河道面积变化
Table 2. Changes of shoreline and channel area
区域 年份 岸线长度/km 2 m线水域面积 河道总面积 北岸 南岸 面积/ km2 增减率/% 面积/ km2 增减率/% 南支 1958 51.49 75.35 802.28 907.52 1973 74.31 75.68 780.11 −2.8 820.13 −9.6 1989 63.48 77.89 770.26 −1.3 807.57 −1.5 1998 65.59 77.89 747.65 −2.9 794.40 −1.6 2010 67.10 78.63 728.39 −2.6 738.42 −7.0 2016 67.10 78.63 690.14 −5.3 735.60 −0.3 2019 67.10 78.63 712.10 +3.2 735.60 −0.3 北支 1958 79.05 84.76 518.21 724.07 1973 81.02 87.12 434.47 −16.2 477.53 −34.0 1989 88.11 90.51 422.56 −2.7 441.45 −7.5 1998 88.11 90.51 419.83 −0.8 441.36 −0.1 2010 89.94 91.35 249.05 −40.7 310.10 −24.6 2016 89.94 91.35 210.21 −15.6 310.10 −24.6 2019 89.94 91.35 193.85 −7.8 310.10 −24.6 南支+北支 1958 290.65 1320.49 1631.59 1973 318.13(+9.5%) 1214.59 −8.0 1297.66 −20.5 1989 319.99(+0.6%) 1192.82 −1.8 1249.02 −3.7 1998 322.10(+0.7%) 1177.49 −1.3 1235.76 −1.1 2010 327.02(+1.5%) 977.44 −17.0 1048.52 −15.2 2016 327.02(+1.5%) 900.35 −7.9 1045.73 −0.3 2019 327.02(+1.5%) 905.95 +0.6 1045.73 −0.3 表 3 各河段在不同时期河床冲淤量
Table 3. Riverbed erosion and deposition in different periods
单位:亿m3 时间段 徐六泾-七丫口 七丫口-浏河口 浏河口-吴淞口 崇头-大新港 大新港-三条港 三条港-连兴港 南支 北支 1958—1973 −2.900 −0.871 −1.148 0.528 1.712 0.720 −4.919 2.960 1973—1989 1.166 0.758 0.716 −0.153 0.284 −0.435 2.64 −0.304 1989—1998 −2.787 −1.232 −2.496 0.397 0.111 0.793 −6.515 1.301 1998—2010 −1.454 −1.085 −2.118 0.839 1.263 2.835 −4.657 4.937 2010—2016 1.091 −0.242 −0.793 −0.064 1.273 1.304 0.056 2.513 2016—2019 −0.707 −0.218 −1.797 −0.017 0.997 0.567 −2.722 1.546 1958—2019 −6.664 −3.037 −8.428 1.232 3.152 4.753 −18.130 9.137 注:“−”为冲刷,“+”为淤积 -
[1] 陈吉余, 沈焕庭, 恽才兴, 等. 长江河口动力过程和地貌演变[M]. 上海: 上海科学技术出版社, 1988. CHEN Jiyu, SHEN Huanting , YUN Caixing, et al. Processes of dynamics and geomorphology of the Changjiang estuary[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1988. (in Chinese) [2] 王俊. 长江口河道演变规律与治理研究[M]. 北京: 中国水利水电出版社, 2013. WANG Jun. Study on the evolution law and regulation of the Yangtze River Estuary[M]. Beijing: China Water & Power Press, 2013. (in Chinese) [3] 刘杰, 赵德招, 程海峰. 长江口南支河床近期冲淤演变机制[J]. 水运工程,2011(7):113-118. (LIU Jie, ZHAO Dezhao, CHENG Haifeng. Recent erosion-accretion evolution mechanism of South Branch in the Yangtze Estuary[J]. Port & Waterway Engineering, 2011(7): 113-118. (in Chinese) [4] 梁鑫鑫, 王磊, 王军. 近百余年来长江口南支水下地形演变特征分析[J]. 人民长江,2019,50(8):20-27. (LIANG Xinxin, WANG Lei, WANG Jun. Morphological evolution analysis of South Branch in Yangtze Estuary over past hundred years[J]. Yangtze River, 2019, 50(8): 20-27. (in Chinese) [5] 杨欧, 刘苍字. 长江口北支沉积物粒径趋势及泥沙来源研究[J]. 水利学报,2002(2):79-84. (YANG Ou, LIU Cangzi. Analysis on sediment transport patterns and sediment sources of North Branch of Changjiang Estuary[J]. Journal of Hydraulic Engineering, 2002(2): 79-84. (in Chinese) [6] 曹民雄, 高正荣, 胡金义. 长江口北支水道水沙特性分析[J]. 人民长江,2003,34(12):34-36. (CAO Minxiong, GAO Zhengrong, HU Jinyi. Analysis on flow and sediment characteristics of North Branch of the Yangtze Estuary[J]. Yangtze River, 2003, 34(12): 34-36. (in Chinese) [7] 杨程生, 高正荣, 俞竹青. 长江口北支河槽容积变化特征的定量分析[J]. 水科学进展,2016,27(3):392-402. (YANG Chengsheng, GAO Zhengrong, YU Zhuqing. Quantitative analysis of the characteristics of channel storage changes in the North Branch of the Yangtze River Estuary[J]. Advances in Water Science, 2016, 27(3): 392-402. (in Chinese) [8] 李伯昌. 1984年以来长江口北支演变分析[J]. 水利水运工程学报,2006(3):9-17. (LI Bochang. Channel evolution in North Branch of Changjiang River Estuary since 1984[J]. Hydro-Science and Engineering, 2006(3): 9-17. (in Chinese) [9] 张静怡, 黄志良, 胡震云. 围涂对长江口北支河势影响分析[J]. 海洋工程,2007,25(2):72-77. (ZHANG Jingyi, HUANG Zhiliang, HU Zhenyun. Effect of the reclamation project on the North Branch of Yangtze River Estuary[J]. The Ocean Engineering, 2007, 25(2): 72-77. (in Chinese) [10] 韩玉芳, 窦希萍. 长江口综合治理历程及思考[J]. 海洋工程,2020,38(4):11-18. (HAN Yufang, DOU Xiping. The process and prospect of comprehensive control of Yangtze estuary[J]. The Ocean Engineering, 2020, 38(4): 11-18. (in Chinese) [11] WANG Y H, RIDD P V, WU H L, et al. Long-term morphodynamic evolution and the equilibrium mechanism of a flood channel in the Yangtze Estuary (China)[J]. Geomorphology, 2008, 99(1/4): 130-138. [12] 韩玉芳. 三峡工程后长江口水沙变化及河床演变特征[C]//第十九届中国海洋(岸)工程学术讨论会论文集, 北京: 海洋出版社, 2019:773-778. HAN Yufang. Characteristics of sediment change and riverbed evolution in the Yangtze River after the Three Gorges Project[C]// Proceedings of the 19th China Ocean (Shore) Engineering Symposium. Beijing: Ocean Press, 2019: 773-778. (in Chinese) [13] HAN Y F, LU C T. Effects of human activity on the evolution of the Yangtze Estuary during the last 20 years[C]//Estuaries and Coastal Zones in Times of Global Change. Singapore: Springer, 2020: 709-721. -