留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同冻土条件下渠道地基热状况模拟研究

韩洪武 穆彦虎 虞洪 丁泽琨 陈领

韩洪武,穆彦虎,虞洪,等. 不同冻土条件下渠道地基热状况模拟研究[J]. 水利水运工程学报,2022(4):140-150. doi:  10.12170/20210108001
引用本文: 韩洪武,穆彦虎,虞洪,等. 不同冻土条件下渠道地基热状况模拟研究[J]. 水利水运工程学报,2022(4):140-150. doi:  10.12170/20210108001
(HAN Hongwu, MU Yanhu, YU Hong, et al. Numerical study on thermal regimes beneath canal in permafrost zones with different geological conditions[J]. Hydro-Science and Engineering, 2022(4): 140-150. (in Chinese)) doi:  10.12170/20210108001
Citation: (HAN Hongwu, MU Yanhu, YU Hong, et al. Numerical study on thermal regimes beneath canal in permafrost zones with different geological conditions[J]. Hydro-Science and Engineering, 2022(4): 140-150. (in Chinese)) doi:  10.12170/20210108001

不同冻土条件下渠道地基热状况模拟研究

doi: 10.12170/20210108001
基金项目: 国家重点研发计划资助项目(2017YFC0405101);国家自然科学基金资助项目(41772325;41630636)
详细信息
    作者简介:

    韩洪武(1980—),男,青海民和人,高级工程师,主要从事高寒高海拔水利工程方面的研究。E-mail:13909716281@139.com

    通讯作者:

    穆彦虎(E-mail:muyanhu@lzb.ac.cn

  • 中图分类号: TV91

Numerical study on thermal regimes beneath canal in permafrost zones with different geological conditions

  • 摘要: 多年冻土区水利工程的建设和运营会对下伏多年冻土产生显著热影响,且不同冻土条件下影响程度明显不同。以高海拔多年冻土区某渠道工程为背景,在考虑冻融土体内水分迁移、冰水相变及土体未冻水含量与温度非线性关系基础上,构建了冻融土体水-热耦合数学模型。利用该模型,开展了气候变暖背景下,渠道多年冻土地基热状况长期演化规律模拟预测,并考虑多年冻土年平均地温(TMAGT)和体积含冰量(iv)的影响。结果表明,当多年冻土含冰量为少冰(iv≤10%)时,渠道垂向和横向热侵蚀显著,运营50年后渠道下部和岸坡下30 m范围已无多年冻土。当T MAGT为−0.5 ℃时,自岸坡向外约10 m范围内下部多年冻土已退化,而当T MAGT为−1.0和−1.5 ℃时,岸坡下部仍有多年冻土分布。随着含冰量的增加,多年冻土热惰性显著增加。当多年冻土含冰量由少冰(iv≤10%)增加至多冰(10%<iv≤20%)、富冰(20%<iv≤30%)时,即使在T MAGT为−0.5 ℃时,运营50年后渠道下部仍有多年冻土存在,但是自渠道中心形成了一个“锅底状”的融化盘。在过水和气候变暖因素作用下,渠底和坡脚多年冻土表现为自上而下的退化模式,而岸坡和天然场地多年冻土退化表现为活动层的缓慢下移和上限附近多年冻土的缓慢升温。
  • 图  1  渠道物理模型(单位:m)

    Figure  1.  Physical model of the canal (unit: m)

    图  2  开挖1年后天然场地不同深度地温实测与模拟对比

    Figure  2.  Field observed and numerical simulated temperature profiles at natural ground after the canal construction

    图  3  不同年平均地温条件下渠道开挖后第50年10月15日地基温度场

    Figure  3.  Temperature fields of permafrost subgrades with different MAGTs on October 15, 50 years after the canal construction

    图  4  不同含冰量下渠道开挖后第50年10月15日地基温度场

    Figure  4.  Temperature fields of permafrost subgrades with different ice contents on October 15 of the 50th year after the canal construction

    图  5  渠道开挖后20年内渠道不同位置地温曲线

    Figure  5.  Temperature profiles at different locations within 20 years after the canal construction

    表  1  土体热物理参数

    Table  1.   Physical-thermal parameters of soil layers

    土体名称λu/(W·m−1·℃−1)λf/(W·m−1·℃−1)Cu/(J·m−3·℃−1)Cf/(J·m−3·℃−1)ab
    砂砾土 1.91 2.61 2.41×106 1.86×106 10.67 0.57
    粉质黏土 1.13 1.58 2.88×106 2.23×106 6.9 0.47
    强风化泥岩 1.47 1.82 2.09×106 1.84×106 9.3 0.52
    土体名称 α/m−1 θr θs Ks/(m·s−1) ρ/(kg·m−3) Ls/(J·m−3)
    砂砾土 3.28 0.01 0.44 2.4×10−7 1800 2.31×107
    粉质黏土 2.60 0.02 0.35 3.3×10−8 1600 6.51×107
    强风化泥岩 2.30 0.02 0.25 1.2×10−8 1700 3.77×107
    下载: 导出CSV

    表  2  不同含冰类型土的热物理参数

    Table  2.   Physical-thermal parameters of frozen soils with different ice contents

    含冰类型ρd/(kg·m−3)W/%λf/(W·m−1·℃−1)Cf/(J·m−3·℃−1)λu/(W·m−1·℃−1)Cu/(J·m−3·℃−1)
    少冰冻土1 660201.382.21×1061.242.68×106
    多冰冻土1 540251.582.23×1061.132.88×106
    富冰冻土1 280351.672.20×1061.092.99×106
    下载: 导出CSV

    表  3  不同含冰类型土的视比热容

    Table  3.   Apparent specific heat of frozen soils with different ice contents 单位:J·kg−1·℃−1

    含冰类型−25~−10 ℃−10~−5 ℃−5~−3 ℃−3~−2 ℃−2~−1 ℃−1~−0.5 ℃−0.5~−0.2 ℃−0.2~0 ℃0~25 ℃
    少冰冻土1 1081 6662 6206 8496 87212 47238 5051 3381 344
    多冰冻土1 1581 6932 6506 7266 75812 14137 13768 3721 466
    富冰冻土1 2751 7712 7426 5506 59611 59834 750187 5881 730
    下载: 导出CSV
  • [1] 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.

    ZHOU Youwu, GUO Dongxin, QIU Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000. (in Chinese)
    [2] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.

    XU Xuezu, WANG Jiacheng, ZHANG Lixin. Physics of frozen soil[M]. Beijing: Science Press, 2000. (in Chinese)
    [3] 马巍, 王大雁. 冻土力学[M]. 北京: 科学出版社, 2016.

    MA Wei, WANG Dayan. Mechanics of frozen soil[M]. Beijing: Science Press, 2016. (in Chinese)
    [4] 马巍, 穆彦虎, 谢胜波, 等. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展,2017,32(5):459-464 doi:  10.11867/j.issn.1001-8166.2017.05.0459

    MA Wei, MU Yanhu, XIE Shengbo, et al. Thermal-mechanical influences and environment effects of expressway construction on the Qinghai-Tibet permafrost engineering corridor[J]. Advances in Earth Science, 2017, 32(5): 459-464. (in Chinese) doi:  10.11867/j.issn.1001-8166.2017.05.0459
    [5] FRENCH H M. The Periglacial Environment (3rd edition)[M]. Chichester: John Wiley & Sons Ltd., 2007.
    [6] MU Y H, MA W, LI G Y, et al. Long-term thermal and settlement characteristics of air convection embankments with and without adjacent surface water ponding in permafrost regions[J]. Engineering Geology, 2020(266): 105464.
    [7] MU Y H, MA W, LI G Y, et al. Impacts of supra-permafrost water ponding and drainage on a railway embankment in continuous permafrost zone, the interior of the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2018(154): 23-31.
    [8] 何鹏飞, 马巍. 我国寒区输水工程研究进展与展望[J]. 冰川冻土,2020,42(1):182-194

    HE Pengfei, MA Wei. Study of canals in cold regions of China: achievements and prospects[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 182-194. (in Chinese)
    [9] 陈武, 董元宏, 李双洋, 等. 季节性冻土区引水暗渠的临界埋深数值分析[J]. 水利水运工程学报,2011(3):65-69 doi:  10.3969/j.issn.1009-640X.2011.03.010

    CHEN Wu, DONG Yuanhong, LI Shuangyang, et al. Numerical analysis of the critical buried depth of the culvert in seasonally frozen ground regions[J]. Hydro-Science and Engineering, 2011(3): 65-69. (in Chinese) doi:  10.3969/j.issn.1009-640X.2011.03.010
    [10] 巩丽丽, 刘德仁, 杨楠, 等. 季节性冻土区路基土体冻胀影响因素灰色关联分析[J]. 水利水运工程学报,2019(1):28-34

    GONG Lili, LIU Deren, YANG Nan, et al. Comprehensive analysis on frost heave factors of subgrade soil in seasonally frozen ground region[J]. Hydro-Science and Engineering, 2019(1): 28-34. (in Chinese)
    [11] 赵联桢, 陈生水, 杨东全, 等. 冻砂土-结构接触面恒温循环剪切性能研究[J]. 水利水运工程学报,2016(1):93-99

    ZHAO Lianzhen, CHEN Shengshui, YANG Dongquan, et al. Cyclic shear property studies on frozen silt-structure interface under constant temperature[J]. Hydro-Science and Engineering, 2016(1): 93-99. (in Chinese)
    [12] 宋迎俊, 许雷, 鲁洋, 等. 基于正交设计的膨胀土冻融循环试验研究[J]. 水利水运工程学报,2017(2):51-58

    SONG Yingjun, XU Lei, LU Yang, et al. Experimental studies on freeze-thaw cycles of expansive soil based on orthogonal design[J]. Hydro-Science and Engineering, 2017(2): 51-58. (in Chinese)
    [13] 蔡正银, 朱询, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土裂隙演化规律[J]. 岩土工程学报,2019,41(8):1381-1389

    CAI Zhenyin, ZHU Xun, HUANG Yinghao, et al. Evolution rules of fissures in expansive soils under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1381-1389. (in Chinese)
    [14] 孙豹, 王乾峰, 徐童淋, 等. 冻融劣化混凝土压剪作用下力学特性及破坏准则[J]. 水利水运工程学报,2019(4):107-115 doi:  10.12170/201904015

    SUN Bao, WANG Qianfeng, XU Tonglin, et al. Mechanical properties and failure criterion of freeze-thaw deteriorated concrete under compressive-shear stress[J]. Hydro-Science and Engineering, 2019(4): 107-115. (in Chinese) doi:  10.12170/201904015
    [15] JOHNSTON G. Dykes on permafrost, Kelsey Generating Station, Manitoba[J]. Canadian Geotechnical Journal, 1969, 6(2): 139-158. doi:  10.1139/t69-013
    [16] BROWN W G, JOHNSTON G. Dikes on permafrost: predicting thaw and settlement[J]. Canadian Geotechnical Journal, 1970, 7(4): 365-371. doi:  10.1139/t70-049
    [17] KRONIK Y A, DEMIN I. Calculation of the temperature regime of earth dams by the finite-element method[J]. Hydrotechnical Construction, 1979, 13(2): 145-152. doi:  10.1007/BF02307505
    [18] DUFOUR S, JUDGE A S, LAFLECHE P. Design and monitoring of earth embankments over permafrost[C]∥Proceedings of Second International Conference on Case Histories in Geotechnical Engineering. Missouri: University of Missouri, 1988: 1001-1010.
    [19] HOLUBEC I, HU X, WONNACOTT J, et al. Design, construction and performance of dams in continuous permafrost[C]∥Proceedings of the Eighth International Conference on Permafrost. Rotterdam: Balkema, 2003: 426-430.
    [20] HARLAN R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973, 9(5): 1314-1323. doi:  10.1029/WR009i005p01314
    [21] 徐学祖, 王家澄, 张立新, 冻土物理学[M]. 北京: 科学出版社, 2010.

    XU Xuezu, WANG Jiacheng, ZHANG Lixin. Physics of frozen soil[M]. Beijing: Science Press, 2010. (in Chinese)
    [22] ZHANG M L, WEN Z, XUE K, et al. A coupled model for liquid water, water vapor and heat transport of saturated-unsaturated soil in cold regions: model formulation and verification[J]. Environmental Earth Sciences, 2016, 75(8): 1-19.
    [23] HANSSON K, SIMUNEK J, MIZOGUCHI M, et al. Water flow and heat transport in frozen soil: numerical solution and freeze/thaw applications[J]. Vadose Zone Journal, 2004, 3(2): 693-704.
    [24] GENUCHTEN M T V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi:  10.2136/sssaj1980.03615995004400050002x
    [25] MUALEM, YECHEZKEL. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi:  10.1029/WR012i003p00513
    [26] 赖远明, 张明义, 李双洋. 寒区工程理论与应用[M]. 北京: 科学出版社, 2009.

    LAI Yuanming, ZHANG Mingyi, LI Shuangyang. Theory and application of cold regions engineering[M]. Beijing: Science Press, 2009. (in Chinese)
    [27] 张建明. 青藏高原冻土路基稳定性及公路工程多年冻土分类研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2004.

    ZHANG Jianming. Study on roadbed stability in permafrost regions on Qinghai-Tibetan Plateau and classification of permafrost in highway engineering[D]. Lanzhou: Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, 2004. (in Chinese)
    [28] LI S Y, ZHAN H B, LAI Y M, et al. The coupled moisture-heat process of permafrost around a thermokarst pond in Qinghai-Tibet Plateau under global warming[J]. Journal of Geophysical Research: Earth Surface, 2019, 119: 836-853.
    [29] ERICKSON T R, STEFAN H G. Linear air/water temperature correlations for streams during open water periods[J]. Journal of Hydrologic Engineering, 2000, 5(3): 317-321. doi:  10.1061/(ASCE)1084-0699(2000)5:3(317)
    [30] 林战举, 牛富俊, 罗京, 等. 青藏工程走廊热融湖湖底热状态[J]. 地球科学 (中国地质大学学报),2015,40(1):179-188

    LIN Zhanju, NIU Fujun, LUO Jing, et al. Thermal regime at bottom of thermokarst lakes along Qinghai-Tibet engineering corridor[J]. Earth Science, 2015, 40(1): 179-188. (in Chinese)
    [31] WU Q B, ZHANG T J. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research, D. Atmospheres: JGR, 2010, 115(D9): D09107: 1-D09107: 12.
    [32] JIN H J, ZHAO L, WANG S L, et al. Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway[J]. Science in China Series D: Earth Sciences, 2006, 49(11): 1170-1183. doi:  10.1007/s11430-006-2003-z
  • [1] 李燕, 王斯海, 朱锐.  复杂边界条件下膨胀土的体变特性与抗压强度研究 . 水利水运工程学报, 2022, (4): 106-113. doi: 10.12170/20210627001
    [2] 陈勃文, 黄英豪.  大型输水渠道改扩建关键技术及设备的研发与应用 . 水利水运工程学报, 2021, (4): 99-106. doi: 10.12170/20200830001
    [3] 周舟, 曾诚, 周婕, 王玲玲, 丁少伟.  等宽明渠交汇口流速分布特性数值模拟 . 水利水运工程学报, 2020, (1): 32-39. doi: 10.12170/20190501005
    [4] 祝龙, 周冬卉, 李云, 宣国祥, 王晓刚.  土坝溃决跌坎水流水动力特性数值模拟 . 水利水运工程学报, 2017, (5): 1-8. doi: 10.16198/j.cnki.1009-640X.2017.05.001
    [5] 郦凯, 章卫胜, 王金华.  江苏沿海潮流数值模拟与潮流能估算 . 水利水运工程学报, 2017, (1): 111-117. doi: 10.16198/j.cnki.1009-640X.2017.01.015
    [6] 周志敏, 徐群, 雷蕾.  瓯江口滞流点运动规律数值模拟 . 水利水运工程学报, 2016, (1): 116-121.
    [7] 武昕竹, 柳淑学, 李金宣.  聚焦波浪与直立圆柱作用的数值模拟 . 水利水运工程学报, 2015, (6): 31-39.
    [8] 王敏, 程文, 施练东, 黄晶, 闵亮, 郑建刚.  汤浦水库泥沙冲淤分布数值模拟 . 水利水运工程学报, 2015, (6): 107-111.
    [9] 邓成进, 袁秋霜, 侯延华, 贾巍.  基于FLUENT的库区涌浪数值模拟 . 水利水运工程学报, 2014, (3): 84-91.
    [10] 高江林, 陈云翔.  基于渗流与应力耦合的防渗墙与坝体相互作用的数值模拟 . 水利水运工程学报, 2013, (2): 58-63.
    [11] 葛旭峰,王长新,李琳.  陡坡后消力池内水跃的数值模拟 . 水利水运工程学报, 2012, (3): 70-74.
    [12] 陈策.  泰州大桥中塔沉井振动数值模拟 . 水利水运工程学报, 2012, (2): 1-7.
    [13] 陈辉,刘志雄,江耀祖.  引航道通航水流条件数值模拟 . 水利水运工程学报, 2012, (4): 13-18.
    [14] 马理强,常建忠,刘谋斌,刘汉涛.  基于SPH方法的溃坝流动数值模拟 . 水利水运工程学报, 2010, (3): -.
    [15] 刘汉涛,常建忠,安康.  基于SPH的自由表面流动数值模拟 . 水利水运工程学报, 2009, (1): -.
    [16] 莫思平,辛文杰,应强.  广州港深水出海航道伶仃航段回淤规律分析 . 水利水运工程学报, 2008, (1): 42-46.
    [17] 潘存鸿,鲁海燕,曾剑.  钱塘江涌潮特性及其数值模拟 . 水利水运工程学报, 2008, (2): -.
    [18] 何杰,辛文杰.  潮汐河口汊道治理的数值模拟 . 水利水运工程学报, 2008, (1): 61-66.
    [19] 陈为博,杨敏.  用VOF方法数值模拟溢流堰流场 . 水利水运工程学报, 2004, (4): 42-45.
    [20] 沈珠江,米占宽.  膨胀土渠道边坡降雨入渗和变形耦合分析 . 水利水运工程学报, 2004, (3): 7-11.
  • 加载中
图(5) / 表 (3)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  37
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2022-08-23

/

返回文章
返回