Numerical study on thermal regimes beneath canal in permafrost zones with different geological conditions
-
摘要: 多年冻土区水利工程的建设和运营会对下伏多年冻土产生显著热影响,且不同冻土条件下影响程度明显不同。以高海拔多年冻土区某渠道工程为背景,在考虑冻融土体内水分迁移、冰水相变及土体未冻水含量与温度非线性关系基础上,构建了冻融土体水-热耦合数学模型。利用该模型,开展了气候变暖背景下,渠道多年冻土地基热状况长期演化规律模拟预测,并考虑多年冻土年平均地温(TMAGT)和体积含冰量(iv)的影响。结果表明,当多年冻土含冰量为少冰(iv≤10%)时,渠道垂向和横向热侵蚀显著,运营50年后渠道下部和岸坡下30 m范围已无多年冻土。当T MAGT为−0.5 ℃时,自岸坡向外约10 m范围内下部多年冻土已退化,而当T MAGT为−1.0和−1.5 ℃时,岸坡下部仍有多年冻土分布。随着含冰量的增加,多年冻土热惰性显著增加。当多年冻土含冰量由少冰(iv≤10%)增加至多冰(10%<iv≤20%)、富冰(20%<iv≤30%)时,即使在T MAGT为−0.5 ℃时,运营50年后渠道下部仍有多年冻土存在,但是自渠道中心形成了一个“锅底状”的融化盘。在过水和气候变暖因素作用下,渠底和坡脚多年冻土表现为自上而下的退化模式,而岸坡和天然场地多年冻土退化表现为活动层的缓慢下移和上限附近多年冻土的缓慢升温。Abstract: In permafrost regions, construction and operation of hydraulic projects will exert considerable thermal impact on underlying permafrost, and its degree will be different at locations with different permafrost geological conditions. Taking a canal in a high altitude permafrost zone as an example, a water-thermal coupled mathematical model for freeze-thaw soils was established in this study. The water migration, ice-water phase change and nonlinear relationship between unfrozen water content and temperature in freezing soils were considered in the model. Using this model, the long-term evolution of the thermal conditions of permafrost subgrade under the canal in the context of climate warming was numerically investigated, and the influences of the mean annual ground temperature (MAGT) and ice content (iv) of the permafrost subgrade were considered. The results show that when the permafrost is ice-poor (iv < 10%), both the vertical and lateral thermal erosions of the canal are significant. After 50 years of the excavation, there is no permafrost under the mid-bottom and bank slope of the canal. When the MAGT is −0.5 ℃, the permafrost under the canal has degraded within about 10 m from the bank slope outward. When the MAGTs are −1.0 or −1.5 ℃, there is still permafrost under the bank slope of the canal. With the increase in iv, the thermal inertia of permafrost increases significantly. When the iv increases from ice-poor to ice-rich (20% < iv ≤ 30%), there is still permafrost existing under the canal in 50th year after the excavation even when the MAGT is −0.5 ℃. However, a thawed layer shaped as a pot-bottom develops beneath the canal. Under the impacts of climate warming and water thermal erosion, the permafrost beneath the canal experiences significant downward degradation, or quick descend of the permafrost table. Only under the impacts of climate warming, the permafrost beneath the slope of canal and the natural ground surface experiences a slow descent of the permafrost table and slight warming of the top permafrost layer.
-
Key words:
- canal /
- permafrost /
- ground temperature /
- ice content /
- numerical simulation
-
表 1 土体热物理参数
Table 1. Physical-thermal parameters of soil layers
土体名称 λu/(W·m−1·℃−1) λf/(W·m−1·℃−1) Cu/(J·m−3·℃−1) Cf/(J·m−3·℃−1) a b 砂砾土 1.91 2.61 2.41×106 1.86×106 10.67 0.57 粉质黏土 1.13 1.58 2.88×106 2.23×106 6.9 0.47 强风化泥岩 1.47 1.82 2.09×106 1.84×106 9.3 0.52 土体名称 α/m−1 θr θs Ks/(m·s−1) ρ/(kg·m−3) Ls/(J·m−3) 砂砾土 3.28 0.01 0.44 2.4×10−7 1800 2.31×107 粉质黏土 2.60 0.02 0.35 3.3×10−8 1600 6.51×107 强风化泥岩 2.30 0.02 0.25 1.2×10−8 1700 3.77×107 表 2 不同含冰类型土的热物理参数
Table 2. Physical-thermal parameters of frozen soils with different ice contents
含冰类型 ρd/(kg·m−3) W/% λf/(W·m−1·℃−1) Cf/(J·m−3·℃−1) λu/(W·m−1·℃−1) Cu/(J·m−3·℃−1) 少冰冻土 1 660 20 1.38 2.21×106 1.24 2.68×106 多冰冻土 1 540 25 1.58 2.23×106 1.13 2.88×106 富冰冻土 1 280 35 1.67 2.20×106 1.09 2.99×106 表 3 不同含冰类型土的视比热容
Table 3. Apparent specific heat of frozen soils with different ice contents
单位:J·kg−1·℃−1 含冰类型 −25~−10 ℃ −10~−5 ℃ −5~−3 ℃ −3~−2 ℃ −2~−1 ℃ −1~−0.5 ℃ −0.5~−0.2 ℃ −0.2~0 ℃ 0~25 ℃ 少冰冻土 1 108 1 666 2 620 6 849 6 872 12 472 38 505 1 338 1 344 多冰冻土 1 158 1 693 2 650 6 726 6 758 12 141 37 137 68 372 1 466 富冰冻土 1 275 1 771 2 742 6 550 6 596 11 598 34 750 187 588 1 730 -
[1] 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000. ZHOU Youwu, GUO Dongxin, QIU Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000. (in Chinese) [2] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001. XU Xuezu, WANG Jiacheng, ZHANG Lixin. Physics of frozen soil[M]. Beijing: Science Press, 2000. (in Chinese) [3] 马巍, 王大雁. 冻土力学[M]. 北京: 科学出版社, 2016. MA Wei, WANG Dayan. Mechanics of frozen soil[M]. Beijing: Science Press, 2016. (in Chinese) [4] 马巍, 穆彦虎, 谢胜波, 等. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展,2017,32(5):459-464 doi: 10.11867/j.issn.1001-8166.2017.05.0459 MA Wei, MU Yanhu, XIE Shengbo, et al. Thermal-mechanical influences and environment effects of expressway construction on the Qinghai-Tibet permafrost engineering corridor[J]. Advances in Earth Science, 2017, 32(5): 459-464. (in Chinese) doi: 10.11867/j.issn.1001-8166.2017.05.0459 [5] FRENCH H M. The Periglacial Environment (3rd edition)[M]. Chichester: John Wiley & Sons Ltd., 2007. [6] MU Y H, MA W, LI G Y, et al. Long-term thermal and settlement characteristics of air convection embankments with and without adjacent surface water ponding in permafrost regions[J]. Engineering Geology, 2020(266): 105464. [7] MU Y H, MA W, LI G Y, et al. Impacts of supra-permafrost water ponding and drainage on a railway embankment in continuous permafrost zone, the interior of the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2018(154): 23-31. [8] 何鹏飞, 马巍. 我国寒区输水工程研究进展与展望[J]. 冰川冻土,2020,42(1):182-194 HE Pengfei, MA Wei. Study of canals in cold regions of China: achievements and prospects[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 182-194. (in Chinese) [9] 陈武, 董元宏, 李双洋, 等. 季节性冻土区引水暗渠的临界埋深数值分析[J]. 水利水运工程学报,2011(3):65-69 doi: 10.3969/j.issn.1009-640X.2011.03.010 CHEN Wu, DONG Yuanhong, LI Shuangyang, et al. Numerical analysis of the critical buried depth of the culvert in seasonally frozen ground regions[J]. Hydro-Science and Engineering, 2011(3): 65-69. (in Chinese) doi: 10.3969/j.issn.1009-640X.2011.03.010 [10] 巩丽丽, 刘德仁, 杨楠, 等. 季节性冻土区路基土体冻胀影响因素灰色关联分析[J]. 水利水运工程学报,2019(1):28-34 GONG Lili, LIU Deren, YANG Nan, et al. Comprehensive analysis on frost heave factors of subgrade soil in seasonally frozen ground region[J]. Hydro-Science and Engineering, 2019(1): 28-34. (in Chinese) [11] 赵联桢, 陈生水, 杨东全, 等. 冻砂土-结构接触面恒温循环剪切性能研究[J]. 水利水运工程学报,2016(1):93-99 ZHAO Lianzhen, CHEN Shengshui, YANG Dongquan, et al. Cyclic shear property studies on frozen silt-structure interface under constant temperature[J]. Hydro-Science and Engineering, 2016(1): 93-99. (in Chinese) [12] 宋迎俊, 许雷, 鲁洋, 等. 基于正交设计的膨胀土冻融循环试验研究[J]. 水利水运工程学报,2017(2):51-58 SONG Yingjun, XU Lei, LU Yang, et al. Experimental studies on freeze-thaw cycles of expansive soil based on orthogonal design[J]. Hydro-Science and Engineering, 2017(2): 51-58. (in Chinese) [13] 蔡正银, 朱询, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土裂隙演化规律[J]. 岩土工程学报,2019,41(8):1381-1389 CAI Zhenyin, ZHU Xun, HUANG Yinghao, et al. Evolution rules of fissures in expansive soils under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1381-1389. (in Chinese) [14] 孙豹, 王乾峰, 徐童淋, 等. 冻融劣化混凝土压剪作用下力学特性及破坏准则[J]. 水利水运工程学报,2019(4):107-115 doi: 10.12170/201904015 SUN Bao, WANG Qianfeng, XU Tonglin, et al. Mechanical properties and failure criterion of freeze-thaw deteriorated concrete under compressive-shear stress[J]. Hydro-Science and Engineering, 2019(4): 107-115. (in Chinese) doi: 10.12170/201904015 [15] JOHNSTON G. Dykes on permafrost, Kelsey Generating Station, Manitoba[J]. Canadian Geotechnical Journal, 1969, 6(2): 139-158. doi: 10.1139/t69-013 [16] BROWN W G, JOHNSTON G. Dikes on permafrost: predicting thaw and settlement[J]. Canadian Geotechnical Journal, 1970, 7(4): 365-371. doi: 10.1139/t70-049 [17] KRONIK Y A, DEMIN I. Calculation of the temperature regime of earth dams by the finite-element method[J]. Hydrotechnical Construction, 1979, 13(2): 145-152. doi: 10.1007/BF02307505 [18] DUFOUR S, JUDGE A S, LAFLECHE P. Design and monitoring of earth embankments over permafrost[C]∥Proceedings of Second International Conference on Case Histories in Geotechnical Engineering. Missouri: University of Missouri, 1988: 1001-1010. [19] HOLUBEC I, HU X, WONNACOTT J, et al. Design, construction and performance of dams in continuous permafrost[C]∥Proceedings of the Eighth International Conference on Permafrost. Rotterdam: Balkema, 2003: 426-430. [20] HARLAN R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973, 9(5): 1314-1323. doi: 10.1029/WR009i005p01314 [21] 徐学祖, 王家澄, 张立新, 冻土物理学[M]. 北京: 科学出版社, 2010. XU Xuezu, WANG Jiacheng, ZHANG Lixin. Physics of frozen soil[M]. Beijing: Science Press, 2010. (in Chinese) [22] ZHANG M L, WEN Z, XUE K, et al. A coupled model for liquid water, water vapor and heat transport of saturated-unsaturated soil in cold regions: model formulation and verification[J]. Environmental Earth Sciences, 2016, 75(8): 1-19. [23] HANSSON K, SIMUNEK J, MIZOGUCHI M, et al. Water flow and heat transport in frozen soil: numerical solution and freeze/thaw applications[J]. Vadose Zone Journal, 2004, 3(2): 693-704. [24] GENUCHTEN M T V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x [25] MUALEM, YECHEZKEL. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513 [26] 赖远明, 张明义, 李双洋. 寒区工程理论与应用[M]. 北京: 科学出版社, 2009. LAI Yuanming, ZHANG Mingyi, LI Shuangyang. Theory and application of cold regions engineering[M]. Beijing: Science Press, 2009. (in Chinese) [27] 张建明. 青藏高原冻土路基稳定性及公路工程多年冻土分类研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2004. ZHANG Jianming. Study on roadbed stability in permafrost regions on Qinghai-Tibetan Plateau and classification of permafrost in highway engineering[D]. Lanzhou: Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, 2004. (in Chinese) [28] LI S Y, ZHAN H B, LAI Y M, et al. The coupled moisture-heat process of permafrost around a thermokarst pond in Qinghai-Tibet Plateau under global warming[J]. Journal of Geophysical Research: Earth Surface, 2019, 119: 836-853. [29] ERICKSON T R, STEFAN H G. Linear air/water temperature correlations for streams during open water periods[J]. Journal of Hydrologic Engineering, 2000, 5(3): 317-321. doi: 10.1061/(ASCE)1084-0699(2000)5:3(317) [30] 林战举, 牛富俊, 罗京, 等. 青藏工程走廊热融湖湖底热状态[J]. 地球科学 (中国地质大学学报),2015,40(1):179-188 LIN Zhanju, NIU Fujun, LUO Jing, et al. Thermal regime at bottom of thermokarst lakes along Qinghai-Tibet engineering corridor[J]. Earth Science, 2015, 40(1): 179-188. (in Chinese) [31] WU Q B, ZHANG T J. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research, D. Atmospheres: JGR, 2010, 115(D9): D09107: 1-D09107: 12. [32] JIN H J, ZHAO L, WANG S L, et al. Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway[J]. Science in China Series D: Earth Sciences, 2006, 49(11): 1170-1183. doi: 10.1007/s11430-006-2003-z -