Spatial and temporal variation characteristics of the drought-flood abrupt alternations over Haihe River Basin
-
摘要: 研究海河流域旱涝急转的发生规律,可为海河流域防汛抗旱提供科学参考依据。利用海河流域159个气象站1961—2019年逐日降水资料,计算出标准化前期降水指数(SAPI),基于该指数根据旱涝等级标准和旱涝急转条件筛选出1961年以来的旱涝急转事件,分析海河流域旱涝急转频次和强度特征。结果表明:海河流域年平均旱涝急转频次为33次,基本上逐年代增加,最近10年平均值达37次。旱涝急转强度也呈上升趋势,2000年后增加至平均值以上,尤其是近10年呈现出跳跃式的增加,达到最大值。旱涝急转多发生在5、6月及9月中旬,盛夏期间发生的次数较少。旱涝急转强度呈单峰型分布,最大值出现在6月中旬到7月上旬,该时段对应的旱涝急转频次也较多,增加了洪涝灾害的风险。从空间分布来看,旱涝急转频次和强度在滦河河系南部地区、北三河系西部及徒骇马颊河中部等地区均为大值区,即这些地区旱涝急转出现频次高、强度大,因此,发生旱涝急转的风险较高。
-
关键词:
- 海河流域 /
- 旱涝急转 /
- 标准化前期降水指数(SAPI) /
- 频次 /
- 强度
Abstract: The research on the occurrence regularity of the drought-flood abrupt alternation in Haihe River Basin can provide scientific reference for flood control and drought relief. Based on the daily precipitation data of 159 meteorological stations in Haihe River Basin from 1961 to 2019, the Standardized Antecedent Precipitation Index (SAPI) is calculated. Based on the SAPI, according to the drought-flood grade standard and drought-flood abrupt alternation conditions, the drought-flood abrupt alternation events since 1961 are screened out, and the frequency and intensity characteristics of drought-flood abrupt alternation in Haihe River Basin are analyzed. The results show that the annual average frequency of drought-flood abrupt alternation in Haihe River Basin is 33 times, which basically increases year by year, with an average of 37 times in recent 10 years. The intensity of drought-flood abrupt alternation also showed an upward trend, and increased to above the average value after 2000; it showed a jumping increase with reaching the maximum value especially in recent 10 years. The drought-flood abrupt alternation occurred mostly in May, June and mid September, and less in midsummer. The intensity of drought-flood abrupt alternation presents a single peak distribution, and the maximum value appears from the middle of June to the first ten days of July. The corresponding frequency of drought-flood abrupt alternation is also more in this period, which increases the risk of flood disaster. From the perspective of spatial distribution, the frequency and intensity of drought-flood abrupt alternation are high value areas in the southern part of Luanhe River system, the western part of Beisanhe River system and the central part of TuhaiMajia River. That is to say, the frequency and intensity of drought-flood abrupt alternation are high in these areas, consequently, the risk of drought-flood abrupt alternation is high. These areas may become the focus of flood control. -
表 1 基于I SAP划分旱涝等级标准
Table 1. Classification of drought and flood grades based on ISAP
等级 ISAP范围 类型 1 2.0≤ISAP 特涝 2 1.5≤ISAP<2.0 重涝 3 1.0≤ISAP<1.5 中涝 4 0.5≤ISAP<1.0 轻涝 5 −0.5≤ISAP<0.5 正常 6 −1.0≤ISAP<−0.5 轻旱 7 −1.5≤ISAP<−1.0 中旱 8 −2.0≤ISAP<−1.5 重旱 9 ISAP<−2.0 特旱 表 2 SAPI识别与历史记载的干旱事件对比(以天津市蓟州区为例)
Table 2. Comparison of drought events identified by SAPI and historical records (Taking Jizhou District of Tianjin as an example)
年份 SAPI识别结果 历史记载 干旱起始日期 干旱结束日期 持续
天数/d1961年 4月6日 7月18日 104 蓟州春大旱,农田受灾2万hm2。 1968年 1月2日 1月11日 10 蓟州冬春夏连旱,农田受灾1 000 hm2。 2月16日 4月6日 51 5月6日 5月22日 17 6月15日 7月12日 28 8月25日 9月17日 24 1972年 3月23日 4月5日 14 蓟州大旱,2至7月中旬,降水量仅33.5 mm,
造成河干、井干、河渠断流。4月27日 7月19日 84 1975年 2月16日 5月3日 77 蓟州春旱,农田受灾1.2万hm2。 1983年 5月31日 8月25日 87 蓟州夏旱,农田受灾2.5万hm2。 1989年 6月19日 7月18日 30 蓟州夏季降水量偏少4成,农作物出现“卡脖旱”,
玉米等作物产量受到影响。8月2日 8月28日 27 2000年 6月14日 8月7日 55 蓟州6月降水量仅为20.9 mm,7月偏少6.5成,造成旱情严峻。 表 3 蓟州站典型暴雨日及洪涝过程筛选结果对比
Table 3. Comparison of typical rainstorm days by observation and flood process selected by SAPI
实测单日最大降水量 SAPI识别洪涝事件 年份 日期 单日降水量/mm 起始日期 结束日期 1962年 7月25日 187.6 7月24日 8月5日 1966年 7月29日 139.2 7月13日 9月5日 1972年 8月4日 184.1 7月27日 8月20日 1978年 7月25日 353.5 7月25日 10月2日 1980年 6月6日 128.2 6月6日 6月20日 1982年 7月25日 167.7 7月25日 8月27日 1984年 8月10日 128.7 8月10日 8月29日 1996年 8月3日 123.8 7月23日 10月15日 2012年 7月22日 174.8 7月22日 8月13日 2016年 7月20日 135.7 7月20日 8月1日 表 4 各年代5—9月各旬旱涝急转频次
Table 4. Drought-flood abrupt alternations frequency over Haihe River Basin from May to September in each age
单位:次 年份 5—9月 5月 6月 7月 8月 9月 上旬 中旬 下旬 上旬 中旬 下旬 上旬 中旬 下旬 上旬 中旬 下旬 上旬 中旬 下旬 1961—1969 28 2 1 3 2 4 4 3 2 2 1 1 1 0 1 1 1970—1979 32 5 3 5 3 2 2 2 1 2 1 1 1 2 2 1 1980—1989 35 6 6 1 1 4 1 1 2 3 2 1 2 1 1 3 1990—1999 33 4 4 1 3 3 1 2 1 1 2 1 1 2 5 2 2000—2009 34 2 3 2 3 2 3 2 1 3 3 3 2 2 3 2 2010—2019 37 2 1 3 4 3 5 3 3 2 1 1 2 2 4 1 -
[1] WU Z W, LI J P, HE J H, et al. Occurrence of droughts and floods during the normal summer monsoons in the mid‐ and lower reaches of the Yangtze River[J]. Geophysical Research Letters, 2006, 33(5): L05813. [2] 吴志伟, 李建平, 何金海, 等. 大尺度大气环流异常与长江中下游夏季长周期旱涝急转[J]. 科学通报,2006,51(14):1717-1724. (WU Zhiwei, LI Jianping, HE Jinhai, et al. Large scale atmospheric circulation anomalies and long-cycle dry-wet abrupt alternation in summer in the middle and lower reaches of the Yangtze River[J]. Chinese Science Bulletin, 2006, 51(14): 1717-1724. (in Chinese) doi: 10.3321/j.issn:0023-074X.2006.14.016 [3] SHAN L J, ZHANG L P, SONG J Y, et al. Characteristics of dry-wet abrupt alternation events in the middle and lower reaches of the Yangtze River Basin and the relationship with ENSO[J]. Journal of Geographical Sciences, 2018, 28(8): 1039-1058. doi: 10.1007/s11442-018-1540-7 [4] 杨家伟, 陈华, 侯雨坤, 等. 基于气象旱涝指数的旱涝急转事件识别方法[J]. 地理学报,2019,74(11):2358-2370. (YANG Jiawei, CHEN Hua, HOU Yukun, et al. A method to identify the drought-flood transition based on the meteorological drought index[J]. Acta Geographica Sinica, 2019, 74(11): 2358-2370. (in Chinese) doi: 10.11821/dlxb201911012 [5] 陶新娥, 侯雨坤. 长江流域气象旱涝异常急转识别及分析[J]. 三峡生态环境监测,2019,4(3):52-58. (TAO Xin’e, HOU Yukun. Identification and analysis of meteorological drought-flood sudden alternation in the Yangtze River Basin[J]. Ecology and Environmental Monitoring of Three Gorges, 2019, 4(3): 52-58. (in Chinese) [6] 孙鹏, 刘春玲, 张强. 东江流域汛期旱涝急转的时空演变特征[J]. 人民珠江,2012,33(5):29-34. (SUN Peng, LIU Chunling, ZHANG Qiang. Spatio-temporal variations of drought-flood abrupt alternation during main flood season in East River Basin[J]. Pearl River, 2012, 33(5): 29-34. (in Chinese) doi: 10.3969/j.issn.1001-9235.2012.05.006 [7] 何慧, 廖雪萍, 陆虹, 等. 华南地区1961—2014年夏季长周期旱涝急转特征[J]. 地理学报,2016,71(1):130-141. (HE Hui, LIAO Xueping, LU Hong, et al. Features of long-cycle drought-flood abrupt alternation in South China during summer in 1961 —2014[J]. Acta Geographica Sinica, 2016, 71(1): 130-141. (in Chinese) [8] 张玉琴, 李栋梁. 华南汛期旱涝急转及其大气环流特征[J]. 气候与环境研究,2019,24(4):430-444. (ZhANG Yuqin, LI Dongliang. Drought-flood abrupt alternation and its atmospheric circulation characteristics during flood season in southern China[J]. Climatic and Environmental Research, 2019, 24(4): 430-444. (in Chinese) [9] 白恒, 严登明, 翁白莎, 等. 皖北地区旱涝演变及急转特征[J]. 水电能源科学,2019,37(1):1-4. (BAI Heng, YAN Dengming, WENG Baisha, et al. Characteristics of evolution and abrupt alternations of drought-flood in northern Anhui[J]. Water Resources and Power, 2019, 37(1): 1-4. (in Chinese) [10] BI W X, WENG B S, YUAN Z, et al. Evolution of drought-flood abrupt alternation and its impacts on surface water quality from 2020 to 2050 in the Luanhe River Basin[J]. International Journal of Environmental Research and Public Health, 2019, 16(5): 691. doi: 10.3390/ijerph16050691 [11] 高芸, 胡铁松, 袁宏伟, 等. 淮北平原旱涝急转条件下水稻减产规律分析[J]. 农业工程学报,2017,33(21):128-136. (GAO Yun, HU Tiesong, YUAN Hongwei, et al. Analysis on yield reduced law of rice in Huaibei plain under drought-flood abrupt alternation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 128-136. (in Chinese) doi: 10.11975/j.issn.1002-6819.2017.21.015 [12] 王梦珂, 毕吴瑕, 翁白莎, 等. 旱涝急转对作物生长发育及产量的影响研究综述[J]. 水利水电技术,2019,50(11):189-196. (WANG Mengke, BI Wuxia, WENG Baisha, et al. Review on impact from drought-flood abrupt alternation on crop growth and yield[J]. Water Resources and Hydropower Engineering, 2019, 50(11): 189-196. (in Chinese) [13] HUANG J, HU T S, YASIR M, et al. Root growth dynamics and yield responses of rice (Oryza sativa L.) under drought—flood abrupt alternating conditions[J]. Environmental and Experimental Botany, 2019, 157: 11-25. doi: 10.1016/j.envexpbot.2018.09.018 [14] XIONG Q Q, SHEN T H, ZHONG L, et al. Comprehensive metabolomic, proteomic and physiological analyses of grain yield reduction in rice under abrupt drought-flood alternation stress[J]. Physiologia Plantarum, 2019, 167(4): 564-584. doi: 10.1111/ppl.12901 [15] 严小林, 张建云, 鲍振鑫, 等. 海河流域近500年旱涝演变规律分析[J]. 水利水运工程学报,2020(4):17-23. (YAN Xiaolin, ZHANG Jianyun, BAO Zhenxin, et al. Evolution of drought and flood in the Haihe Rvier Basin for the last 500 years[J]. Hydro-Science and Engineering, 2020(4): 17-23. (in Chinese) [16] 任国玉, 王涛, 郭军, 等. 海河流域近现代降水量变化若干特征[J]. 水利水电科技进展,2015,35(5):103-111. (REN Guoyu, WANG Tao, GUO Jun, et al. Characteristics of precipitation variations in Haihe River Basin in modern times[J]. Advances in Science and Technology of Water Resources, 2015, 35(5): 103-111. (in Chinese) doi: 10.3880/j.issn.1006-7647.2015.05.014 [17] 邹旭恺, 任国玉, 张强. 基于综合气象干旱指数的中国干旱变化趋势研究[J]. 气候与环境研究,2010,15(4):371-378. (ZOU Xukai, REN Guoyu, ZHANG Qiang. Droughts variations in China based on a compound index of meteorological drought[J]. Climatic and Environmental Research, 2010, 15(4): 371-378. (in Chinese) doi: 10.3878/j.issn.1006-9585.2010.04.04 [18] 李立新, 严登华, 秦天玲, 等. 海河流域1961—2010年干旱化特征及其变化趋势分析[J]. 干旱区资源与环境,2012,26(11):61-67. (LI Lixin, YAN Denghua, QIN Tianling, et al. Drought variation in Haihe River Basin from 1961 to 2010[J]. Journal of Arid Land Resources and Environment, 2012, 26(11): 61-67. (in Chinese) [19] 宗燕, 王艳君, 翟建青. 海河流域气象干旱时空特征分析[J]. 干旱区资源与环境,2013,27(12):198-202. (ZONG Yan, WANG Yanjun, ZHAI Jianqing. Spatial and temporal characteristics of meteorological drought in the Haihe River Basin based on standardized precipitation index[J]. Journal of Arid Land Resources and Environment, 2013, 27(12): 198-202. (in Chinese) doi: 10.3969/j.issn.1003-7578.2013.12.033 [20] 何群英, 陈涛. 2006年8月海河流域暴雨过程的成因分析[J]. 气象,2009,35(1):80-86. (HE Qunying, CHEN Tao. Analysis of causes of heavy rainfall in Haihe River valley in August 2006[J]. Meteorological Monthly, 2009, 35(1): 80-86. (in Chinese) doi: 10.7519/j.issn.1000-0526.2009.01.010 [21] 卢焕珍, 刘一玮, 张楠. 海河流域切变线类暴雨成因分析[J]. 气象与环境学报,2014,30(1):15-22. (LU Huanzhen, LIU Yiwei, ZHANG Nan. Cause of heavy rain by shear line in the Haihe River Basin[J]. Journal of Meteorology and Environment, 2014, 30(1): 15-22. (in Chinese) doi: 10.3969/j.issn.1673-503X.2014.01.003 [22] 杨德江, 马宁, 尉英华. 海河流域暴雨的气候特征与环流分型[J]. 水文,2017,37(1):83-91. (YANG Dejiang, MA Ning, WEI Yinghua. Climatic characteristics of rainstorms and circulation types in Haihe River Basin[J]. Journal of China Hydrology, 2017, 37(1): 83-91. (in Chinese) doi: 10.3969/j.issn.1000-0852.2017.01.015 [23] 魏琳, 李静, 王颖. 海河流域“16.7”大暴雨洪水成因初步分析[J]. 水文,2017,37(4):91-96. (WEI Lin, LI Jing, WANG Ying. Analysis of “2016·7” storm flood in Haihe River Basin[J]. Journal of China Hydrology, 2017, 37(4): 91-96. (in Chinese) doi: 10.3969/j.issn.1000-0852.2017.04.017 [24] 汪靖, 段丽瑶, 何群英, 等. 海河流域盛汛期旱涝急转事件及其与大气环流异常的关系[J]. 热带气象学报,2016,32(4):515-523. (WANG Jing, DUAN Liyao, HE Qunying, et al. Drought-flood abrupt alternation events of Haihe River Basin in main rainy season and their relationships with the anomalous atmospheric circulation[J]. Journal of Tropical Meteorology, 2016, 32(4): 515-523. (in Chinese) [25] 鲍振鑫, 张建云, 严小林, 等. 海河流域60年降水量的变化及未来情景分析[J]. 水利水运工程学报,2014(5):8-13. (BAO Zhenxin, ZHANG Jianyun, YAN Xiaolin, et al. Analysis of precipitation in the Haihe River Basin during the last decades of years and future scenarios[J]. Hydro-Science and Engineering, 2014(5): 8-13. (in Chinese) doi: 10.3969/j.issn.1009-640X.2014.05.002 [26] 杨艳娟, 曹经福, 熊明明, 等. 影响海河流域参考作物蒸散量的气象因子定量分析[J]. 干旱气象,2017,35(3):367-373. (YANG Yanjuan, CAO Jingfu, XIONG Mingming, et al. Quantitative analysis of climate factors influencing on potential evapotranspiration changes over Haihe River Basin[J]. Journal of Arid Meteorology, 2017, 35(3): 367-373. (in Chinese) [27] 夏兴生, 朱秀芳, 潘耀忠, 等. 农作物干旱灾害实时风险监测研究——以2014年河南干旱为例[J]. 自然灾害学报,2016,25(5):28-36. (XIA Xingsheng, ZHU Xiufang, PAN Yaozhong, et al. Study on real-time risk monitoring of crop drought disaster—taking the drought of Henan Province in 2014 as an example[J]. Journal of Natural Disasters, 2016, 25(5): 28-36. (in Chinese) [28] 杨卫忠, 张葆蔚, 符日明. 2016年洪涝灾情综述[J]. 中国防汛抗旱,2017,27(1):26-29. (YANG Weizhong, ZHANG Baowei, FU Riming. Summary of flood disaster in 2016[J]. China Flood & Drought Management, 2017, 27(1): 26-29. (in Chinese) doi: 10.3969/j.issn.1673-9264.2017.01.006 [29] HEIM R R. A review of twentieth-century drought indices used in the United States[J]. Bulletin of the American Meteorological Society, 2002, 83(8): 1149-1166. doi: 10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2 [30] 袁文平, 周广胜. 干旱指标的理论分析与研究展望[J]. 地球科学进展,2004,19(6):982-991. (YUAN Wenping, ZHOU Guangsheng. Theoratical study and research prospect on drought indices[J]. Advances in Earth Science, 2004, 19(6): 982-991. (in Chinese) doi: 10.3321/j.issn:1001-8166.2004.06.016 [31] 王春林, 陈慧华, 唐力生, 等. 基于前期降水指数的气象干旱指标及其应用[J]. 气候变化研究进展,2012,8(3):157-163. (WANG Chunlin, CHEN Huihua, TANG Lisheng, et al. A daily meteorological drought indicator based on standardized antecedent precipitation index and its spatial-temperal variation[J]. Progressus Inquisitiones de Mutatione Climatis, 2012, 8(3): 157-163. (in Chinese) doi: 10.3969/j.issn.1673-1719.2012.03.001 [32] 白慧, 吴战平, 龙俐, 等. 基于标准化前期降水指数的气象干旱指标在贵州的适用性分析[J]. 云南大学学报(自然科学版),2013,35(5):661-668. (BAI Hui, WU Zhanping, LONG Li, et al. The application of the daily meteorological drought indicator based on standardized antecedent precipitation index in Guizhou[J]. Journal of Yunnan University, 2013, 35(5): 661-668. (in Chinese) [33] LU E. Determining the start, duration, and strength of flood and drought with daily precipitation: rationale[J]. Geophysical Research Letters, 2009, 36(12): L12707. doi: 10.1029/2009GL038817 [34] 温克刚, 王宗信. 中国气象灾害大典(天津卷)[M]. 北京: 气象出版社, 2008: 79-113. WEN Kegang, WANG Zongxin. China meteorological disaster dictionary (Tianjin volume)[M]. Beijing: China Meteorological Press, 2008: 79-113. (in Chinese) [35] 车少静. 海河流域旱涝时空变化特征研究[D]. 南京: 南京信息工程大学, 2010: 14-56. CHE Shaojing. Spatial and temporal characteristics of drought/flood in the Haihe River Basin[D]. Nanjing: Nanjing University of Information Science and Technology, 2010: 14-56. (in Chinese) [36] 梁苏洁, 丁一汇, 段丽瑶, 等. 近46年京津冀地区“夏雨秋下”现象及其成因初探[J]. 大气科学,2019,43(3):655-675. (LIANG Sujie, DING Yihui, DUAN Liyao, et al. A study on the phenomenon of midsummer precipitation delays until early autumn and associated reasons in Beijing-Tianjin-Hebei during 1970-2015[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(3): 655-675. (in Chinese) [37] 陈才. 暴雨和高温天气对地质灾害的影响机理研究[J]. 灾害学,2020,35(1):32-37. (CHEN Cai. Study on the mechanism of the impact of heavy rain and high temperature weather on geological disasters[J]. Journal of Catastrophology, 2020, 35(1): 32-37. (in Chinese) doi: 10.3969/j.issn.1000-811X.2020.01.007 -