Attribution of runoff attenuation in the Yongding River basin upstream of the Sanjiadian
-
摘要: 20世纪70年代以来,永定河流域径流特征发生了巨大变化,下游常年处于断流状态。根据1956—1991年及2006—2018年永定河三家店以上流域各站的气象与水文数据,利用M-K检验和小波分析方法分析了永定河流域的气象要素及径流变化趋势,利用双累积曲线和基于Budyko假设的弹性系数法进行了径流减少归因分析。结果表明:①1956—2018年间永定河流域的降雨无明显增加或减少趋势,气温有显著上升趋势,蒸发能力略有下降,径流减少非常明显,达到99.9%置信水平。②永定河流域大部分站点的降雨和径流变化存在大概11或23 a的波动周期。③永定河10个水文站的降雨-径流双累积曲线均发生了2~4次较为明显的偏移,在20世纪的60年代中期、70年代初期、80年中期和90年代初期都发生了偏向径流的偏移,这表明在降雨量水平未发生明显变化的情况下,径流减少了。④永定河流域是强人类活动区域,弹性系数绝对值依次为:降水>下垫面参数>蒸发能力,人类活动对径流减少的平均贡献率约为95%。Abstract: The runoff characteristics in the Yongding River basin have changed enormously since the 1970s with part of the lower reaches drying up frequently all the year around. Based on the meteorological and hydrological data from two periods (1956-1991 and 2006-2018), the main influencing factors of runoff attenuation were analyzed using the M-K test and wavelet analysis. The attribution of runoff attenuation was performed using Double Mass Curve and Elastic Coefficient Method based on the Budyko hypothesis. The results illustrate: (1) during the years 1956-2018, rainfall in the Yongding River basin did not vary significantly, the temperature increased significantly, the evaporation capacity decreased slightly, and the runoff decreased significantly, reaching 99.9% confidence level; (2) the rainfall and runoff for most of stations have a fluctuation period between 11 and 23 years; (3) the double mass curves for 10 hydrological stations have shifted 4 times (mid-1960s, early 1970s, mid-1980s, and the early 1990s) which are all biased towards runoff. This indicates that the runoff has declined in spite of no obvious change in the rainfall level; (4) the Yongding River basin is a region affected by a lot of human activities. It should be noted that the absolute value of elasticity coefficient of precipitation is larger than the underlying surface parameters which in turn are larger than the evaporation capacity. Finally, the average contribution rate of human activities to runoff attenuation is about 95%.
-
Key words:
- the Yongding River Basin /
- climate change /
- trend anlysis /
- runoff change /
- attribution analysis
-
表 1 永定河流域各站气温蒸发变化趋势M-K检验结果
Table 1. Mann-Kendall test result for temperature and evaporation in Yongding River Basin
站点名称 控制面积/km2 起始年份 系列长度/a 气温变化趋势 蒸发变化趋势 气温突变年份 蒸发突变年份 丰镇 785 1956 47 0.049 4 −0.047 8 1989* 1983 孤山 2 619 1956 47 0.032 3 −0.015 9 1986* 2016 固定桥 15 803 1973 30 0.074 0 0.067 7 1972* 1958 册田水库 17 050 1961 42 0.052 5 −0.257 3 1985* 1974 石匣里 23 627 1956 46 0.050 3 0.037 1 1989* 1989 响水堡 14 507 1956 46 0.047 0 −0.358 9 1988* 2017 官厅水库 42 500 1956 47 0.039 1 −0.576 6 1986* 2016 注:带*号表示变化趋势明显,达到95%显著水平。 表 2 永定河流域各站降雨径流变化趋势分析结果
Table 2. Analysis of annual precipitation and runoff change trend in Yongding River basin
站点
名称起始年份 系列长度/a M-K检验 小波分析 突变点选取年份 降水突变年份 径流突变年份 降水突变年份 径流突变年份 降雨 径流 丰镇 1956 47 2012 1986* 2016(23) 2011(23) 2016 1985 孤山 1956 47 2016 1988* 1966(3) 2010(32) 2016 1988 固定桥 1973 30 2016 1986* 2016(23) 1980(29) 2016 1986 册田水库 1961 42 1973 1981 1988(32) 1973(11) 1982 1985 石匣里 1956 46 2016 1976* 1962(11) 1963(24) 2012 1986 响水堡 1956 46 2016 1983* 1962(9) 1970(23) 1962 1983 官厅水库 1956 47 2016 1982* 2016(23) 1962(23) 2016 1984 注:带*号表示变化趋势明显,达到95%显著水平;括号中数值为小波分析得到的变化周期(a)。 表 3 永定河流域各站径流减少双累积曲线法归因分析结果
Table 3. Runoff reduction analysis through double mass curve method in Yongding River basin
站点
名称基准期 变化期 时段 年均
降雨/mm年均
径流/万m3时段 年均
降雨/mm理论年
径流/万m3实际年
径流/万m3年径流
减少率/%气候变化
贡献率/%下垫面变化
贡献率/%丰镇 1956—1983 390.2 3 723.1 1983—2018 412.6 3 936.9 932.3 76.30 −7.66 107.66 孤山 1956—1991 420.0 7 566.6 1991—2018 410.4 7 393.0 1 964.7 73.40 3.10 96.90 固定桥 1973—1985 427.0 25 694.1 1985—2018 455.4 27 404.2 3 676.0 86.60 −7.77 107.77 册田水库 1961—1971 476.1 52 563.2 1991—2018 410.4 7 393.0 1 964.7 93.10 15.50 84.50 石匣里 1956—1966 438.1 99 560.0 1991—2018 434.5 94 319.2 7 039.3 92.50 5.66 94.34 响水堡 1956—1964 439.6 64 276.7 1982—2018 420.9 61 536.9 10 651.3 82.70 5.11 94.89 官厅水库 1956—1970 424.2 151144.0 1991—2018 436.9 155666.0 9 863.1 93.70 −3.20 103.20 表 4 永定河流域各站径流减少弹性系数法归因分析结果
Table 4. Runoff reduction analysis in Yongding River basin
参数 丰镇 孤山 固定桥 册田水库 石匣里 响水堡 官厅水库 基准期起点 1956 1956 1973 1961 1956 1956 1956 基准期终点 1985 1991 1986 1985 1986 1983 1984 基准期年均降雨/mm 389.4 421.0 421.3 454.4 419.4 406.8 405.2 基准期年均ET/mm 966.7 998.0 959.8 971.71 984.2 1022.4 1037.3 基准期年径流深/mm 45.2 27.7 14.1 21.9 25.6 34.6 26.5 基准期下垫面参数 1.64 2.14 2.80 2.61 2.20 1.90 2.80 变化期起点 1985 1991 1986 1985 1986 1983 1984 变化期终点 2018 2018 2018 2018 2018 2018 2018 变化期年均降雨/mm 416.2 409.6 448.8 440.1 425.5 413.9 417.4 变化期年均ET/mm 964.4 1 003.7 966.0 968.3 985.7 1 008.1 1 023.2 变化期年均径流/mm 11.3 8.8 4.2 2.9 4.1 7.7 3.9 变化期下垫面参数 2.95 3.00 4.20 4.46 3.90 3.20 3.70 流域降水弹性系数 2.73 3.12 4.24 3.83 3.35 3.00 3.23 流域蒸发弹性系数 −1.73 −2.12 −3.24 −2.83 −2.35 −2.00 −2.23 流域下垫面弹性系数 −2.48 −2.83 −3.55 −3.17 −2.98 −2.78 −3.04 降雨变化贡献率/% −10.50 6.82 −18.42 5.13 −2.21 −2.84 −11.92 蒸发变化贡献率/% −0.23 1.00 1.39 −0.42 0.17 −1.52 −3.72 下垫面变化贡献率/% 110.73 92.18 117.03 95.29 102.04 104.35 115.65 -
[1] 张建云, 王国庆. 气候变化与中国水资源可持续利用[J]. 水利水运工程学报,2009(4):17-21. (ZHANG Jianyun, WANG Guoqing. Climate change and sustainable utilization of water resources in China[J]. Hydro-Science and Engineering, 2009(4): 17-21. (in Chinese) doi: 10.3969/j.issn.1009-640X.2009.04.003 [2] 张利茹, 贺永会, 唐跃平, 等. 海河流域径流变化趋势及其归因分析[J]. 水利水运工程学报,2017(4):59-66. (ZHANG Liru, HE Yonghui, TANG Yueping, et al. Analysis of runoff change trend and its attribution in Haihe River basin[J]. Hydro-Science and Engineering, 2017(4): 59-66. (in Chinese) [3] WANG D B, HEJAZI M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States[J]. Water Resources Research, 2011, 47(10): W00J12. [4] ZUO D P, XU Z X, ZHAO J, et al. Response of runoff to climate change in the Wei River basin, China[J]. Hydrological Sciences Journal, 2015, 60(3): 508-522. doi: 10.1080/02626667.2014.943668 [5] 李丹, 冯民权, 苟婷. 气候变化对汾河(运城段)径流影响模拟[J]. 水利水运工程学报,2016(2):54-61. (LI Dan, FENG Minquan, GOU Ting. Simulation of climate change impacts on runoff of Yuncheng reach of Fenhe River[J]. Hydro-Science and Engineering, 2016(2): 54-61. (in Chinese) [6] 王小杰, 姜仁贵, 解建仓, 等. 渭河干流径流变化趋势及突变分析[J]. 水利水运工程学报,2019(2):33-40. (WANG Xiaojie, JIANG Rengui, XIE Jiancang, et al. Analysis of variation trend and abrupt point of runoff in the mainstream of Weihe River Basin[J]. Hydro-Science and Engineering, 2019(2): 33-40. (in Chinese) [7] 李斌, 解建仓, 胡彦华, 等. 渭河中下游年径流量变化趋势及突变分析[J]. 水利水运工程学报,2016(3):61-69. (LI Bin, XIE Jiancang, HU Yanhua, et al. Analysis of variation and abruption of annual runoff in middle and lower Weihe River[J]. Hydro-Science and Engineering, 2016(3): 61-69. (in Chinese) [8] WANG H N, CHEN L H, YU X X. Distinguishing human and climate influences on streamflow changes in Luan River basin in China[J]. Catena, 2016, 136: 182-188. doi: 10.1016/j.catena.2015.02.013 [9] 李二辉, 穆兴民, 赵广举. 1919—2010年黄河上中游区径流量变化分析[J]. 水科学进展,2014,25(2):155-163. (LI Erhui, MU Xingmin, ZHAO Guangju. Temporal changes in annual runoff and influential factors in the upper and middle reaches of Yellow River from 1919—2010[J]. Advances in Water Science, 2014, 25(2): 155-163. (in Chinese) [10] TIAN F, YANG Y H, HAN S M. Using runoff slope-break to determine dominate factors of runoff decline in Hutuo River Basin, North China[J]. Water Science & Technology, 2009, 60(8): 2135-2144. [11] PENG S Z, LIU W X, WANG W G, et al. Estimating the effects of climatic variability and human activities on streamflow in the Hutuo River Basin, China[J]. Journal of Hydrologic Engineering, 2013, 18(4): 422-430. doi: 10.1061/(ASCE)HE.1943-5584.0000664 [12] WANG S J, YAN M, YAN Y X, et al. Contributions of climate change and human activities to the changes in runoff increment in different sections of the Yellow River[J]. Quaternary International, 2012, 282: 66-77. doi: 10.1016/j.quaint.2012.07.011 [13] 刘艳丽, 王国庆, 金君良, 等. 基于Budyko假设的环境变化对流域径流影响的界定[J]. 水利水运工程学报,2014(6):1-8. (LIU Yanli, WANG Guoqing, JIN Junliang, et al. An attribution method for catchment-scale runoff variation evaluation under environmental change based on Budyko hypothesis[J]. Hydro-Science and Engineering, 2014(6): 1-8. (in Chinese) doi: 10.3969/j.issn.1009-640X.2014.06.001 [14] 杨大文, 张树磊, 徐翔宇. 基于水热耦合平衡方程的黄河流域径流变化归因分析[J]. 中国科学: 技术科学,2015,45(10):1024-1034. (YANG Dawen, ZHANG Shulei, XU Xiangyu. Attribution analysis for runoff decline in Yellow River Basin during past fifty years based on Budyko hypothesis[J]. Scientia Sinica Technologica, 2015, 45(10): 1024-1034. (in Chinese) doi: 10.1360/N092015-00013 [15] 张树磊, 杨大文, 杨汉波, 等. 1960—2010年中国主要流域径流量减小原因探讨分析[J]. 水科学进展,2015,26(5):605-613. (ZHANG Shulei, YANG Dawen, YANG Hanbo, et al. Analysis of the dominant causes for runoff reduction in five major basins over China during 1960—2010[J]. Advances in Water Science, 2015, 26(5): 605-613. (in Chinese) [16] 张利平, 于松延, 段尧彬, 等. 气候变化和人类活动对永定河流域径流变化影响定量研究[J]. 气候变化研究进展,2013,9(6):391-397. (ZHANG Liping, YU Songyan, DUAN Yaobin, et al. Quantitative assessment of the effects of climate change and human activities on runoff in the Yongding River Basin[J]. Progressus Inquisitiones de Mutatione Climatis, 2013, 9(6): 391-397. (in Chinese) doi: 10.3969/j.issn.1673-1719.2013.06.001 [17] 丁爱中, 赵银军, 郝弟, 等. 永定河流域径流变化特征及影响因素分析[J]. 南水北调与水利科技,2013,11(1):17-22. (DING Aizhong, ZHAO Yinjun, HAO Di, et al. Analysis of variation characteristics of runoff and their influencing factors in the Yongding River Basin[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(1): 17-22. (in Chinese) [18] 牛汝辰. 中国水名词典[M]. 哈尔滨: 哈尔滨地图出版社, 1995: 62. NIU Ruchen. Chinese water dictionary[M]. Harbin: Harbin Map Publishing House, 1995: 62. (in Chinese) [19] 曹洁萍, 迟道才, 武立强, 等. Mann-Kendall检验方法在降水趋势分析中的应用研究[J]. 农业科技与装备,2008(5):35-37, 40. (CAO Jieping, CHI Daocai, WU Liqiang, et al. Mann-Kendall examination and application in the analysis of precipitation trend[J]. Agricultural Science & Technology and Equipment, 2008(5): 35-37, 40. (in Chinese) doi: 10.3969/j.issn.1674-1161.2008.05.013 [20] 王乐, 刘德地, 李天元, 等. 基于多变量M-K检验的北江流域降水趋势分析[J]. 水文,2015,35(4):85-90. (WANG Le, LIU Dedi, LI Tianyuan, et al. Trend analysis of precipitation in Beijiang river basin based on multivariate Mann-Kendall test[J]. Journal of China Hydrology, 2015, 35(4): 85-90. (in Chinese) doi: 10.3969/j.issn.1000-0852.2015.04.015 [21] 张庆强. 季节性Kendall检验在天津地表水功能区水质趋势分析中的应用研究[J]. 安徽农业科学,2013,41(21):9016-9017. (ZHANG Qingqiang. Application of seasonal Kendall test in water quality trend analysis of surface water functional area in Tianjin[J]. Journal of Anhui Agricultural Sciences, 2013, 41(21): 9016-9017. (in Chinese) doi: 10.3969/j.issn.0517-6611.2013.21.075 [22] 张盛霖, 邓高燕, 黄勇奇. Mann-Kendall检验法在Excel中的实现与应用[J/OL]. (2014-06-27) [2021-01-10]. http://www.paper.edu.cn/releasepaper/content/201406-448. ZHANG Shenglin, DENG Gaoyan, HUANG Yongqi. Implement and application of Man-Kendall test method in Excel[J/OL]. (2014-06-27) [2021-01-10]. http://www.paper.edu.cn/releasepaper/content/201406-448. (in Chinese) [23] 贾恪. 科尔沁沙地沙丘—草甸相间地区湖泊的演变规律及其驱动力分析[D]. 呼和浩特: 内蒙古农业大学, 2014. JIA Ke. Lake evolution and its driving force analysis of dune-meadow-dune area in Horqin sandy land in recent 30 years[D]. Hohhot: Inner Mongolia Agricultural University, 2014.(in Chinese) [24] SEARCY J K, HARDISON C H. Double-mass curves[R]. Washington: United States Government Printing Office, 1960. [25] KOHLER M A. On the use of double-mass analysis for testing the consistency of meteorological records and for making required adjustments[J]. Bulletin of the American Meteorological Society, 1949, 30(5): 188-195. doi: 10.1175/1520-0477-30.5.188 [26] 胡彩虹, 王艺璇, 管新建, 等. 基于双累积曲线法的径流变化成因分析[J]. 水资源研究,2012,1(4):204-210. (HU Caihong, WANG Yixuan, GUAN Xinjian, et al. The causes of runoff variation based on double cumulative curve analysis method[J]. Journal of Water Resources Research, 2012, 1(4): 204-210. (in Chinese) [27] 穆兴民, 张秀勤, 高鹏, 等. 双累积曲线方法理论及在水文气象领域应用中应注意的问题[J]. 水文,2010,30(4):47-51. (MU Xingmin, ZHANG Xiuqin, GAO Peng, et al. Theory of double mass curves and its applications in hydrology and meteorology[J]. Journal of China Hydrology, 2010, 30(4): 47-51. (in Chinese) doi: 10.3969/j.issn.1000-0852.2010.04.011 [28] China Meteorlogical Administration. Grades of meteorological drought: GB/T 20481-2017[S]. Beijing: Standards Press of China, 1996. [29] 宋晓猛, 张建云, 占车生, 等. 气候变化和人类活动对水文循环影响研究进展[J]. 水利学报,2013,44(7):779-790. (SONG Xiaomeng, ZHANG Jianyun, ZHAN Chesheng, et al. Review for impacts of climate change and human activities on water cycle[J]. Journal of Hydraulic Engineering, 2013, 44(7): 779-790. (in Chinese) [30] 黄斌斌, 郝成元, 李若男, 等. 气候变化及人类活动对地表径流改变的贡献率及其量化方法研究进展[J]. 自然资源学报,2018,33(5):899-910. (HUANG Binbin, HAO Chengyuan, LI Ruonan, et al. Research progress on the quantitative methods of calculating contribution rates of climate change and human activities to surface runoff changes[J]. Journal of Natural Resources, 2018, 33(5): 899-910. (in Chinese) doi: 10.11849/zrzyxb.20170261 -