Analysis of mechanical properties of sand shale mixture under reciprocating shear
-
摘要: 土体在往复剪切作用下的力学性质对研究周期性荷载响应有重要意义。通过改进往复剪切直剪仪,设定4种法向应力进行32次循环剪切,研究了砂泥岩混合料应力应变曲线性态、滞回圈面积和阻尼比变化规律;通过分析剪切刚度随法向应力及往复剪次数的分布规律,建立了砂泥岩混合料剪切刚度经验计算方法;概化了颗粒间接触模式,揭示了砂泥岩混合料强度与变形微观机制。试验结果与理论分析表明:应力应变曲线随法向应力增大由应变软化逐渐转为应变硬化;滞回圈面积随往复剪次数增大而逐渐减小,阻尼比随往复剪次数增加而缓慢增大,且与法向应力无关。初始剪切刚度随法向应力呈线性分布,归一化剪切刚度与往复剪次数呈对数函数关系,据此建立了考虑法向应力与往复剪次数的砂泥岩混合料剪切刚度经验计算方法。Abstract: The mechanical properties of soil under reciprocating shear are of great significance to the study of cyclic load response. By improving the reciprocating shear direct shear instrument, 4 normal stresses are set for 32 cycles of shear. The behavior of stress-strain curve and the law of hysteresis loop area and damping ratio are found out for sandstone-mudstone particle mixture. According to the distribution law of shear stiffness with normal stress and reciprocating shear frequency, an empirical calculation method for shear stiffness of sandstone-mudstone particle mixture is established. By generalizing the contact mode between particles, the micro mechanism of strength and deformation is revealed for sandstone-mudstone particle mixture. Experimental results and theoretical analysis show that the stress-strain curve gradually changes from strain softening to strain hardening as the normal stress increases. The area of the hysteresis loop gradually decreases with the increase of the number of reciprocating shears, and the damping ratio increases slowly with the increase of the number of reciprocating shears, and has nothing to do with the normal stress. The initial shear stiffness is linear with the normal stress, and the normalized shear stiffness has a logarithmic function relationship with the number of reciprocating shears. Based on this, an empirical calculation of the shear stiffness of the sand-shale mixture considering the normal stress and the number of reciprocating shears is established.
-
表 1 砂岩与泥岩力学参数
Table 1. Mechanical parameters of sandstone and mudstone
岩样
名称弹性模量/
GPa泊松比 单轴抗压
强度/MPa黏聚力/
MPa内摩
擦角/°砂岩 11.786 0.284 67.614 16.699 43.521 泥岩 3.718 0.311 22.192 5.165 39.967 -
[1] WANG J J, QIU Z F, DENG W J, et al. Effects of mudstone particle content on shear strength of a crushed sandstone-mudstone particle mixture[J]. Marine Georesources & Geotechnology, 2016, 34(4): 395-402. [2] WANG J J, ZHANG H P, DENG D P, et al. Effects of mudstone particle content on compaction behavior and particle crushing of a crushed sandstone-mudstone particle mixture[J]. Engineering Geology, 2013, 167: 1-5. doi: 10.1016/j.enggeo.2013.10.004 [3] ZHOU W J, GUO Z, WANG L Z, et al. Sand-steel interface behaviour under large-displacement and cyclic shear[J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106352. doi: 10.1016/j.soildyn.2020.106352 [4] FAKHARIAN K, AHMAD A. Effect of anisotropic consolidation and rubber content on dynamic parameters of granulated rubber-sand mixtures[J]. Soil Dynamics and Earthquake Engineering, 2021, 141: 106531. doi: 10.1016/j.soildyn.2020.106531 [5] WANG X, CHENG H, YAN P, et al. The influence of roughness on cyclic and post-cyclic shear behavior of red clay-concrete interface subjected to up to 1000 cycles[J]. Construction and Building Materials, 2021, 273: 121718. doi: 10.1016/j.conbuildmat.2020.121718 [6] 齐剑峰, 栾茂田, 杨庆, 等. 饱和黏土动剪切模量与阻尼比的试验研究[J]. 岩土工程学报,2008,30(4):518-523. (QI Jianfeng, LUAN Maotian, YANG Qing, et al. Dynamic shear modulus and damping ratio of saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 518-523. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.04.009 [7] ZHANG G, ZHANG J M. Constitutive rules of cyclic behavior of interface between structure and gravelly soil[J]. Mechanics of Materials, 2009, 41(1): 48-59. doi: 10.1016/j.mechmat.2008.08.003 [8] 孔亮, 段建立, 郑颖人. 慢速往复荷载下饱和砂土变形特性试验研究[J]. 工程勘察,2001(5):1-4. (KONG Liang, DUAN Jianli, ZHENG Yinren. Study on deformation behaviours of saturated soil under slow reciprocating loading[J]. Geotechnical Investigation and Surveying, 2001(5): 1-4. (in Chinese) [9] 杨光, 孙江龙, 于玉贞, 等. 偏应力和球应力往返作用下粗粒料的变形特性[J]. 清华大学学报(自然科学版),2009,49(6):838-841. (YANG Guang, SUN Jianglong, YU Yuzhen, et al. Deformation characteristics of coarse-grained materials during cyclic loading of deviatoric and spherical stresses[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(6): 838-841. (in Chinese) doi: 10.3321/j.issn:1000-0054.2009.06.013 [10] 傅中志, 张意江, 陈生水, 等. 粗粒料的切线模量表达式与参数确定方法[J]. 水利水运工程学报,2019(1):1-10. (FU Zhongzhi, ZHANG Yijiang, CHEN Shengshui, et al. A tangential modulus model for coarse granular materials and the corresponding method for parameter identification[J]. Hydro-Science and Engineering, 2019(1): 1-10. (in Chinese) [11] SABERI M, ANNAN C D, KONRAD J M. Three-dimensional constitutive model for cyclic behavior of soil-structure interfaces[J]. Soil Dynamics and Earthquake Engineering, 2020, 134: 106162. doi: 10.1016/j.soildyn.2020.106162 [12] 陈晓平, 黄井武, 尹赛华, 等. 滑带土强度特性的试验研究[J]. 岩土力学,2011,32(11):3212-3218. (CHEN Xiaoping, HUANG Jingwu, YIN Saihua, et al. Experimental study of strength property of slip zone soils[J]. Rock and Soil Mechanics, 2011, 32(11): 3212-3218. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.11.003 [13] 郭聚坤, 雷胜友, 魏道凯, 等. 粗糙度对结构物-细砂界面剪切特性的影响[J]. 水利水运工程学报,2019(3):85-94. (GUO Jukun, LEI Shengyou, WEI Daokai, et al. Effcets of roughness on shear properties of structure-sands interface[J]. Hydro-Science and Engineering, 2019(3): 85-94. (in Chinese) [14] 简富献, 张宏伟, 张钧堂, 等. 浸水时间对砂泥岩填料压缩特性影响试验研究[J]. 水利水运工程学报,2016(4):111-117. (JIAN Fuxian, ZHANG Hongwei, ZHANG Juntang, et al. Influences of soaking time on compression properties of sandstone-mudstone mixture[J]. Hydro-Science and Engineering, 2016(4): 111-117. (in Chinese) [15] 由子沛, 钱建固, 黄茂松. 等幅剪应变下砂土循环单剪行为的离散元模拟[J]. 岩土力学,2017,38(1):263-271. (YOU Zipei, QIAN Jiangu, HUANG Maosong, et al. Discrete element simulation of cyclic simple shear behavior of sandy soil with constant amplitude of shear strain[J]. Rock and Soil Mechanics, 2017, 38(1): 263-271. (in Chinese) [16] 蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报,2019,41(2):195-254. (JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) [17] CEN W J, BAUER E, WEN L S, et al. Experimental investigations and constitutive modeling of cyclic interface shearing between HDPE geomembrane and sandy gravel[J]. Geotextiles and Geomembranes, 2019, 47(2): 269-279. doi: 10.1016/j.geotexmem.2018.12.013 -