Ecological evaluation of waterway based on improved analytic hierarchy process
-
摘要: 针对传统层次分析法中存在繁琐计算的可能性及容易出现严重的不一致性这两个问题,综合考虑了最优传递矩阵和“三标度法”的优点,形成改进的层次分析法。参考现有研究基础,构建航道生态性评价体系。评价体系由1个目标、6个准则和17个指标构成。以长江中游荆江航道为例,对荆江航道整治工程前后的2011年和2015年进行评价与对比,得出:荆江航道的健康程度(Channel Health Index,ICH)由2011年的“良好”(ICH=3.432)上升为2015年的“优秀”(ICH=4.187),整治工程前后荆江航道生态性有了显著改善。按照健康指数提升的成因划分,将准则层下的6个功能归为4类影响因素;采用改进层次分析法与用传统层次分析法计算得出的结果相对偏差为0.94%(2011年)和0.40%(2015年),在简化构造比较矩阵的评判标度和优化矩阵一致性的同时确保了计算结果的准确性。
-
关键词:
- 改进的层次分析法(IAHP) /
- 荆江航道 /
- 航道生态性 /
- 评价体系
Abstract: The traditional analytic hierarchy process shows the problem of the possibility of cumbersome calculation and serious inconsistency. Aiming at that, we comprehensively consider the advantages of the optimal transfer matrix and the "three-scale method" to establish an improved analytic hierarchy process. A waterway ecological evaluation system, which consisted of 1 target, 6 criteria, and 17 indicators, was constructed with reference to the basis of existing research. Taking the Jingjiang Reach of the Yangtze River as an example, we evaluated and compared the situation of the waterway regulation works in 2011 (before regulation) and 2015 (after regulation) and concluded that the Channel Health Index (ICH) increased from “good” (in 2011 with ICH=3.432) to “excellent” (in 2015 with ICH=4.187). The ecology of the Jingjiang Channel exhibited significant improvement after the waterway regulation works. The 6 functions under the criterion level are classified into 4 types of influencing factors, according to the reasons for the increase of the health index. The relative deviations of the results calculated by the improved analytic hierarchy process and the traditional analytic hierarchy process are 0.94% (2011) and 0.40% (2015), respectively, which means that the improved analytic hierarchy process simplifies the evaluation scale of the comparison matrix and optimizes the consistency of the matrix while ensuring the accuracy of the calculation results. -
表 1 评价体系指标的评分标准及分值
Table 1. Scoring standard and score of evaluation system index
指标代号 评分标准 得分 指标代号 评分标准 得分 5 4 3 2 1 2011年 2015年 5 4 3 2 1 2011年 2015年 C1/% ≥95 ≥90 ≥80 ≥70 <70 3 5 C10 3.5 ≥1.5 ≥1.0 ≥0.5 <0.5 3 4 C2/% ≥95 ≥80 ≥65 ≥60 <60 4 5 C11/m 1倍河宽 0.5河宽 0.25河宽 0.1河宽 <0.1河宽 2 3 C3/(个/100 km) ≤0.3 ≤0.6 ≤0.9 ≤1.2 >1.2 3 3 C12/% ≥95 ≥90 ≥80 ≥70 <70 3 5 C4 ≤50 ≤100 ≤200 ≤300 >300 3 4 C13/% <20 <30 <40 <50 ≥50 4 4 C5 58~60 48~52 40~44 28~34 <22 3 3 C14/% ≥90 ≥80 ≥60 ≥40 <40 5 5 C6 很好 较好 一般 差 极差 2 3 C15/% ≥95 ≥80 ≥65 ≥60 <60 3 4 C7/% ≥30 <30 <20 <15 <10 5 5 C16 千年一遇 百年一遇 50年一遇 20年一遇 10年一遇 4 5 C8/% ≥90 ≥80 ≥60 ≥40 ≥20 4 4 C17/(mg·L−1) ≥7.5 ≥6 ≥5 ≥3 ≥2 4 5 C9/% ≥50 ≥40 ≥30 ≥20 ≥10 4 4 表 2 比较矩阵A中各元素及重要性指数ri
Table 2. Comparison matrix elements and importance index ri
aij B1 B2 B3 B4 B5 B6 ri B1 1 0 2 0 0 2 5 B2 2 1 2 2 0 2 9 B3 0 0 1 0 0 1 2 B4 2 0 2 1 0 2 7 B5 2 2 2 2 1 2 11 B6 0 0 1 0 0 1 2 表 3 评价体系17个指标绝对权重
Table 3. Absolute weight table of 17 indexes of evaluation system
指标代号 绝对权重 指标代号 绝对权重 指标代号 绝对权重 C1 0.054 C7 0.031 C13 0.109 C2 0.025 C8 0.015 C14 0.044 C3 0.011 C9 0.005 C15 0.190 C4 0.005 C10 0.033 C16 0.190 C5 0.103 C11 0.013 C17 0.052 C6 0.103 C12 0.018 表 4 荆江生态航道健康指数计算结果
Table 4. Calculation results of Jingjiang ecological channel health index
目标层 指标层 指标绝对权重 得分 各指标健康指数 ICH值 2011年 2015年 2011年 2015年 荆江河段航道生态性评价体系 通航水深保证率 0.054 3 5 0.161 0.268 航标设备完善率 0.025 4 5 0.100 0.125 水系连通程度 0.011 3 3 0.034 0.034 船只发生事故总数 0.005 3 4 0.016 0.021 鱼类完整性指数 0.103 3 3 0.309 0.309 珍稀物种存活状况 0.103 2 3 0.206 0.309 湿地保留率 0.031 5 5 0.153 0.153 3.432(2011年) 生态需水满足度 0.015 4 4 0.058 0.058 植被覆盖率 0.005 4 4 0.022 0.022 景观多样性数值 0.033 3 4 0.099 0.132 河岸缓冲带宽度 0.013 2 3 0.027 0.040 饮用水安全保证率 0.018 3 5 0.054 0.090 水资源开发利用率 0.109 4 4 0.436 0.436 4.187(2015年) 功能区水质达标率 0.044 5 5 0.221 0.221 防洪工程措施达标率 0.190 3 4 0.570 0.760 最大排蓄洪水能力 0.190 4 5 0.760 0.950 溶解氧量 0.052 4 5 0.208 0.260 -
[1] 张志强, 徐中民, 程国栋. 生态足迹的概念及计算模型[J]. 生态经济,2000(10):8-10. (ZHANG Zhiqiang, XU Zhongmin, CHENG Guodong. The concept of ecological ‘footprints’ and computer models[J]. Ecological Economy, 2000(10): 8-10. (in Chinese) [2] 邓聚龙. 灰色系统综述[J]. 世界科学,1983(7):1-5. (DENG Julong. Review of grey system[J]. World Science, 1983(7): 1-5. (in Chinese) [3] SAATY T L. Decision making—the analytic hierarchy and network processes (AHP/ANP)[J]. Journal of Systems Science and Systems Engineering, 2004, 13(1): 1-35. doi: 10.1007/s11518-006-0151-5 [4] 耿雷华, 刘恒, 钟华平, 等. 健康河流的评价指标和评价标准[J]. 水利学报,2006,37(3):253-258. (GENG Leihua, LIU Heng, ZHONG Huaping, et al. Indicators and criteria for evaluation of healthy rivers[J]. Journal of Hydraulic Engineering, 2006, 37(3): 253-258. (in Chinese) doi: 10.3321/j.issn:0559-9350.2006.03.001 [5] 李凌云, 黎礼刚, 曹慧群. 环境友好型护岸的评价指标体系[C]∥第三届全国河道治理与生态修复技术交流研讨会论文集. 深圳: 中国水利学会, 中国水利技术信息中心, 2011: 6. LI Lingyun, LI Ligang, CAO Huiqun. Evaluation index system of environment-friendly revetment[C]∥Proceedings of Special Issue of the Third National River Regulation and Ecological Restoration Technology Exchange Seminar. Shenzhen: China Water Conservancy Association, China Water Conservancy Technology Information Center, 2011: 6. (in Chinese) [6] 李天宏, 丁瑶, 倪晋仁, 等. 长江中游荆江河段生态航道评价研究[J]. 应用基础与工程科学学报,2017,25(2):221-234. (LI Tianhong, DING Yao, NI Jinren, et al. Ecological waterway assessment of the Jingjiang River Reach[J]. Journal of Basic Science and Engineering, 2017, 25(2): 221-234. (in Chinese) [7] 匡舒雅, 李天宏. 五元联系数在长江下游生态航道评价中的应用[J]. 南水北调与水利科技,2018,16(5):93-101. (KUANG Shuya, LI Tianhong. Application of five-element connection number to assessment of ecological waterway[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(5): 93-101. (in Chinese) [8] 李天宏, 薛晶, 夏炜, 等. 组合赋权法-木桶综合指数法在长江生态航道评价中的应用[J]. 应用基础与工程科学学报,2019,27(1):36-49. (LI Tianhong, XUE Jing, XIA Wei, et al. Application of combination weighting method and comprehensive index method based on cask theory in ecological waterway assessment of Yangtze River[J]. Journal of Basic Science and Engineering, 2019, 27(1): 36-49. (in Chinese) [9] 李岱远, 高而坤, 吴永祥, 等. 基于网络层次分析法的节水型社会综合评价[J]. 水利水运工程学报,2017(2):29-37. (LI Daiyuan, GAO Erkun, WU Yongxiang, et al. Comprehensive evaluation of water-saving society based on analytic network process[J]. Hydro-Science and Engineering, 2017(2): 29-37. (in Chinese) [10] 赵梦兰. 基于改进层次分析法的山区桥梁建设风险影响评价[J]. 公路与汽运,2020(5):158-160. (ZHAO Menglan. Risk impact assessment of mountain bridge construction based on improved analytic hierarchy process[J]. Highways & Automotive Applications, 2020(5): 158-160. (in Chinese) doi: 10.3969/j.issn.1671-2668.2020.05.041 [11] 梁樑, 盛昭翰, 徐南荣. 一种改进的层次分析法[J]. 系统工程,1989,7(3):5-7, 2. (LIANG Liang, SHENG Zhaohan, XU Nanrong. An improved analytic hierarchy process[J]. Systems Engineering, 1989, 7(3): 5-7, 2. (in Chinese) [12] 左军. 层次分析法中判断矩阵的间接给出法[J]. 系统工程,1988,6(6):56-63. (ZUO Jun. Indirect method of giving judgment matrix in analytic hierarchy process[J]. Systems Engineering, 1988, 6(6): 56-63. (in Chinese) -