Three-dimensional numerical simulation of the influence of advancement patterns on local scour around dike
-
摘要: 在实施土石堤坝溃口快速封堵、河道截流等水利和防洪减灾工程时,口门或龙口处存在较强的局部冲刷。基于已有的经圆柱、丁坝局部冲刷试验结果验证的三维数值模型,模拟了单向、双向进占方式下龙口宽度B/H = 4.3、5.8时堤头和河床的局部冲刷发展。根据水流特性与冲刷发展的关系,分析了加剧局部冲刷的水流结构和进占方式对局部冲刷发展的影响规律。研究结果表明:单向进占时,戗堤对水流和冲刷发展存在偏移效应;冲刷在初始阶段均表现为沿堤头上游、裹头下游形成的斜向轴线冲刷趋势,堤头上游绕流后的边界冲刷在整个冲刷过程中始终剧烈;进占长度对水流冲刷偏移效应产生影响,在B/H = 5.8时剧烈淘刷区位于戗堤堤头上游的底部堤脚,但是在B/H = 4.3时则位于裹头下游。双向进占时,水流沿龙口轴线对称分布;进占长度影响戗堤局部冲刷的剧烈程度。下潜水流和涡旋是造成戗堤局部冲刷的主要原因。Abstract: During the implementation of water conservancy and flood control and disaster mitigation, such as river closure and quick closuring earth-rock dike breaches, a strong local scour occurs at the gap or mouth. A 3D numerical model of local scour was verified by the experiments of previous studies, and this model was applied to simulate the local scour around the dike and the Riverbed under the one-way and two-way advancement patterns at the gap width B/H = 4.3 and 5.8. The influence of advancement patterns on the development of local scour around dike was analyzed. The results show that in the case of one-way advancement pattern, the gap flow was deflected by the dike to the other side. The local scour of the upstream dike head is always intense in the whole process. Due to the deflection of the dike, the locations of intense scouring downstream are different. The intense scouring area is located at the bottom of the upstream end of the dike at B/H=5.8, and this area was located at the wrapping head downstream at B/H = 4.3. In the case of two-way advancement pattern, the flow is distributed symmetrically along the gap axis. The gap width only affects the intensity of local scouring on the dike. The diving flow and eddy are the main reasons for local scour around the dike.
-
Key words:
- river closure /
- advancement patterns /
- local scour /
- flow fields /
- 3D numerical simulation
-
表 1 计算工况
Table 1. Numerical conditions
工况 进占长度/m 流量/(m3·s−1) 流速/(m·s−1) 水深/m 龙口宽度/m 龙口落差/mm 原型 模型 单向进占 I区 0.75 2 800 0.158 0.32 0.20 1.16 18.0 II区 1.05 2 800 0.158 0.32 0.20 0.86 18.5 双向进占 I区 0.62 2 800 0.158 0.32 0.20 1.16 18.0 II区 0.77 2 800 0.158 0.32 0.20 0.86 18.5 -
[1] 张静, 杨庆, 戴光清, 等. 单戗条件下抛投强度对截流难度的影响研究[J]. 水动力学研究与进展(A辑),2014,29(4):429-434 ZHANG Jing, YANG Qing, DAI Guangqing, et al. The study on the impact of the dumping intensity to the closure difficulty under the condition of single peak embankment[J]. Chinese Journal of Hydrodynamics (SerA), 2014, 29(4): 429-434. (in Chinese) [2] 孙志禹, 陈先明, 朱红兵. 三峡工程截流技术[J]. 中国科学:技术科学,2017,47(8):785-795 SUN Zhiyu, CHEN Xianming, ZHU Hongbin. River closure technique of the Three Gorges Project[J]. Scientia Sinica Technologica, 2017, 47(8): 785-795. (in Chinese) [3] 李文清. 雅砻江锦屏一级水电站截流施工技术[J]. 南水北调与水利科技,2008,6(3):81-83,91 doi: 10.3969/j.issn.1672-1683.2008.03.026 LI Wenqing. Study on river cut-off design of Jinping Stage 1 hydroelectric project[J]. South-to-North Water Transfers and Water Science & Technology, 2008, 6(3): 81-83,91. (in Chinese) doi: 10.3969/j.issn.1672-1683.2008.03.026 [4] 何兴勇. 水电站施工截流方法及其应用研究[D]. 成都: 四川大学, 2006 HE Xingyong. Study on closure scheme in deep water river[D]. Chengdu: Sichuan University, 2006. (in Chinese) [5] 胡志根, 孟德乾, 黄天润, 等. 单戗堤立堵截流龙口的水力特性试验研究[J]. 水利学报,2011,42(4):414-418 doi: 10.13243/j.cnki.slxb.2011.04.017 HU Zhigen, MENG Deqian, HUANG Tianrun, et al. Experimental study on hydraulic characteristics of gap in end-dumping closure with single embankment[J]. Journal of Hydraulic Engineering, 2011, 42(4): 414-418. (in Chinese) doi: 10.13243/j.cnki.slxb.2011.04.017 [6] 张为, 张小峰, 袁晶. 可变网格下江河截流数学模型研究[J]. 水力发电学报,2010,29(3):76-83 ZHANG Wei, ZHANG Xiaofeng, YUAN Jing. Research of the river closure flow numerical model with variable grid method[J]. Journal of Hydroelectric Engineering, 2010, 29(3): 76-83. (in Chinese) [7] 应强. 淹没丁坝附近的水流流态[J]. 河海大学学报,1995,23(4):62-68 YING Qiang. Flow pattern near the submerged spur dike[J]. Journal of Hohai University, 1995, 23(4): 62-68. (in Chinese) [8] DEY S, BARBHUIYA A K. Velocity and turbulence in a scour hole at a vertical-wall abutment[J]. Flow Measurement and Instrumentation, 2006, 17(1): 13-21. doi: 10.1016/j.flowmeasinst.2005.08.005 [9] KOTHYARI U C, KUMAR A. Temporal variation of scour around circular compound piers[J]. Journal of Hydraulic Engineering, 2012, 138(11): 945-957. doi: 10.1061/(ASCE)HY.1943-7900.0000593 [10] OLSEN N R B, KJELLESVIG H M. Three-dimensional numerical flow modeling for estimation of maximum local scour depth[J]. Journal of Hydraulic Research, 1998, 36(4): 579-590. doi: 10.1080/00221689809498610 [11] SUMER B M, FREDSØE J. Scour around pile in combined waves and current[J]. Journal of Hydraulic Engineering, 2001, 127(5): 403-411. doi: 10.1061/(ASCE)0733-9429(2001)127:5(403) [12] 戚蓝, 曾庆达, 吉顺文. 天然河道丁坝群局部冲刷三维数值模拟[J]. 水利水运工程学报,2020(1):59-65 doi: 10.12170/20180920001 QI Lan, ZENG Qingda, JI Shunwen. Three-dimensional numerical simulation of local scour based on spur dikes in a natural river[J]. Hydro-Science and Engineering, 2020(1): 59-65. (in Chinese) doi: 10.12170/20180920001 [13] SHIELDS A. Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung[D]. Berlin: Technical University Berlin, 1936. [14] 李登松, 戴光清, 金鑫, 等. 基于有限体积法的三维局部冲刷数值模型研究及应用[J]. 计算力学学报,2020,37(3):332-339 doi: 10.7511/jslx20190624001 LI Dengsong, DAI Guangqing, JIN Xin, et al. Research and application of three-dimensional numerical model of local scour based on finite volume method[J]. Chinese Journal of Computational Mechanics, 2020, 37(3): 332-339. (in Chinese) doi: 10.7511/jslx20190624001 [15] 谭伟民. 二滩水电站河床截流[J]. 水力发电学报,2002(2):44-56 doi: 10.3969/j.issn.1003-1243.2002.02.007 TAN Weimin. Ertan Hydropower Station river closure[J]. Journal of Hydroelectric Engineering, 2002(2): 44-56. (in Chinese) doi: 10.3969/j.issn.1003-1243.2002.02.007 [16] UNGER J, HAGER W H. Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers[J]. Experiments in Fluids, 2007, 42(1): 1-19. -