Improvement of memory fading filter applied in the underwater acoustic location algorithm
-
摘要: 水下定位是自动化设备在水下建筑物安全监测工作过程中基础性、关键性的工作。滤波算法是水声定位算法的重要组成部分,有助于抑制噪声还原真实数据。衰减记忆滤波可以一定程度上处理由于模型不准确或模型变化及舍入误差累积等因素所引起的滤波发散问题。记忆衰减方式对算法的性能影响很大,对水声定位中的扩展卡尔曼滤波算法的记忆衰减方式进行了改进,主要改进在判断是否需要进行记忆衰减后,以观测值为标准进行记忆衰减。3种不同工况的水声定位仿真试验结果,验证了改进算法中记忆衰减方式的合理性和准确性;通过与现有记忆衰减算法仿真比较,改进算法可改善定位效果,提高连续定位精度。Abstract: Underwater positioning is the basic and critical work of automation equipment in the process of safety monitoring of underwater buildings. The filtering algorithm is an important part of underwater acoustic location algorithm, which helps to suppress noise and restore real data. Attenuated memory filtering can solve the problem of filtering divergence caused by inaccurate model, model change and rounding error accumulation to a certain extent. The memory of memory attenuation has a great impact on the performance of the algorithm. The current selection method has some problems, such as low flexibility, strong subjectivity and so on. In this paper, the memory attenuation mode of extended Kalman filter algorithm in underwater acoustic positioning is improved. The main idea is that the memory attenuation is carried out according to the observed value, after judging whether memory attenuation is needed. The underwater acoustic positioning simulation test results under three different working conditions verify the rationality and accuracy of the memory attenuation method in the improved algorithm. Compared with the existing memory attenuation algorithm simulation, the improved algorithm can improve the positioning effect and the continuous positioning accuracy.
-
表 1 衰减因子相关分析
Table 1. Correlation analysis of attenuation factors
指标变量 预测时长 均方根误差 最优衰减因子 预测时长 1.000 −0.435* 0.275 均方根误差 −0.435* 1.000 −0.190 最优衰减因子 0.275 −0.190 1.000 注:*在0.05级别(双尾),相关性显著。 表 2 不同记忆衰减方法的累积定位均方根误差
Table 2. Cumulative root mean square error of different memory attenuation methods
记忆衰减方法 工况 累积位置均方根误差/m IFMKF 1 72.933 2 374.472 TFMKF 1 90.494 2 1730.732 EWFMKF 1 92.719 2 731.148 -
[1] 杨彬. 简述水利水电工程中的大坝安全监测技术[J]. 低碳世界,2020,10(9):32-33. (YANG Bin. Brief introduction of dam safety monitoring technology in water conservancy and hydropower projects[J]. Low Carbon World, 2020, 10(9): 32-33. (in Chinese) doi: 10.3969/j.issn.2095-2066.2020.09.016 [2] 张建云, 刘九夫, 金君良. 关于智慧水利的认识与思考[J]. 水利水运工程学报,2019(6):1-7. (ZHANG Jianyun, LIU Jiufu, JIN Junliang. Understanding and thinking of smart water conservancy[J]. Hydro-Science and Engineering, 2019(6): 1-7. (in Chinese) doi: 10.12170/201906001 [3] 徐兵, 陈俊禄, 杨楚骅. 强监管下智慧水利市场机遇与挑战[J]. 现代信息科技,2019,3(20):136-138. (XU Bing, CHEN Junlu, YANG Chuhua. Opportunities and challenges of intelligent water conservancy market under strong supervision[J]. Modern Information Technology, 2019, 3(20): 136-138. (in Chinese) doi: 10.3969/j.issn.2096-4706.2019.20.046 [4] 肖飞. 大坝安全监测技术探讨[J]. 低碳世界,2021,11(1):70-71. (XIAO Fei. Discussion on dam safety monitoring technology[J]. Low Carbon World, 2021, 11(1): 70-71. (in Chinese) doi: 10.3969/j.issn.2095-2066.2021.01.035 [5] 臧云歌. 水下AUV定位系统设计及算法研究[D]. 南京: 东南大学, 2017. ZANG Yunge. Design and algorithm research of autonomous underwater vehicle positioning system[D]. Nanjing: Southeast University, 2017. (in Chinese) [6] 王尚, 刘晓夏. 水下声学定位系统误差分析研究[J]. 中国石油和化工标准与质量,2020,40(14):186-187. (WANG Shang, LIU Xiaoxia. Error analysis of underwater acoustic positioning system[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(14): 186-187. (in Chinese) doi: 10.3969/j.issn.1673-4076.2020.14.091 [7] 隋海琛, 田春和, 韩德忠, 等. 水下定位系统误差分析[J]. 水道港口,2010,31(1):69-72. (SUI Haichen, TIAN Chunhe, HAN Dezhong, et al. Error analysis of underwater positioning system[J]. Journal of Waterway and Harbor, 2010, 31(1): 69-72. (in Chinese) doi: 10.3969/j.issn.1005-8443.2010.01.014 [8] 章翔瑞. 提高北斗卫星导航系统中定位精度的算法研究[D]. 西安: 西安科技大学, 2020. ZHANG Xiangrui. Research on algorithms for improving positioning precision in Beidou satellite navigation system[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese) [9] 陈菘, 卢敏. 几种滤波算法的分析与比较[J]. 电脑知识与技术,2020,16(32):23-25. (CHEN Song, LU Min. Analysis and comparison of several filtering algorithms[J]. Computer Knowledge and Technology, 2020, 16(32): 23-25. (in Chinese) [10] 邱恺, 黄国荣, 陈天如, 等. 卡尔曼滤波过程的稳定性研究[J]. 系统工程与电子技术,2005,27(1):33-35. (QIU Kai, HUANG Guorong, CHEN Tianru, et al. Study of the stability of Kalman filtering process[J]. Systems Engineering and Electronics, 2005, 27(1): 33-35. (in Chinese) doi: 10.3321/j.issn:1001-506X.2005.01.010 [11] 李莉. 衰减记忆扩展卡尔曼滤波在目标跟踪中的应用[J]. 电子测量技术,2011,34(2):36-38, 65. (LI Li. Fading memory extended Kalman filtering algorithm for maneuvering target tracking application[J]. Electronic Measurement Technology, 2011, 34(2): 36-38, 65. (in Chinese) doi: 10.3969/j.issn.1002-7300.2011.02.010 [12] 王仁, 赵长胜, 夏志浩, 等. 无迹卡尔曼滤波衰减记忆算法研究[J]. 测绘通报,2015(12):20-22. (WANG Ren, ZHAO Changsheng, XIA Zhihao, et al. Study of attenuation memory unscented Kalman filtering algorithm[J]. Bulletin of Surveying and Mapping, 2015(12): 20-22. (in Chinese) [13] LIU Y H, FAN X Q, LV C, et al. An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles[J]. Mechanical Systems and Signal Processing, 2018, 100: 605-616. doi: 10.1016/j.ymssp.2017.07.051 [14] 蔡佳, 黄长强, 井会锁, 等. 基于指数加权的改进衰减记忆自适应滤波算法[J]. 探测与控制学报,2013,35(4):21-26. (CAI Jia, HUANG Changqiang, JING Huisuo, et al. Adaptive fading memory Kalman filtering algorithm based on exponential weighting[J]. Journal of Detection & Control, 2013, 35(4): 21-26. (in Chinese) [15] TRIPATHI R P, GHOSH S, CHANDLE J O. Tracking of object using optimal adaptive Kalman filter[C]∥2016 IEEE International Conference on Engineering and Technology (ICETECH). March 17-18, 2016, Coimbatore, India. IEEE, 2016: 1128-1131. [16] 刘健, 刘忠, 曲毅. 纯方位目标运动分析的自适应衰减记忆滤波算法[J]. 中国海洋大学学报(自然科学版),2006,36(4):551-554. (LIU Jian, LIU Zhong, QU Yi. Algorithm of adaptive memory attenuated filter in bearings-only target motion analysis[J]. Periodical of Ocean University of China, 2006, 36(4): 551-554. (in Chinese) [17] 杨博. 无线电信号定位的算法研究[D]. 太原: 中北大学, 2019. YANG Bo. Research on the algorithm of radio signal localization[D]. Taiyuan: North University of China, 2019. (in Chinese) [18] 邱恺, 黄国荣, 陈天如, 等. 基于滤波过程的卡尔曼滤波发散判定方法[J]. 系统工程与电子技术,2005,27(2):229-231. (QIU Kai, HUANG Guorong, CHEN Tianru, et al. Method of divergence detection for Kalman filter based on filtering process[J]. Systems Engineering and Electronics, 2005, 27(2): 229-231. (in Chinese) doi: 10.3321/j.issn:1001-506X.2005.02.010 [19] 王京伟, 董大伟, 华春蓉, 等. 扩展卡尔曼滤波的影响因素分析[J]. 电子科技,2013,26(8):10-12. (WANG Jingwei, DONG Dawei, HUA Chunrong, et al. Analysis of the influencing factors of EKF[J]. Electronic Science and Technology, 2013, 26(8): 10-12. (in Chinese) doi: 10.3969/j.issn.1007-7820.2013.08.004 [20] 张宇, 季晓燕, 张丹. 短基线水下定位原理及误差分析[J]. 舰船电子工程,2017,37(7):41-45. (ZHANG Yu, JI Xiaoyan, ZHANG Dan. Short baseline underwater positioning principle and error analysis[J]. Ship Electronic Engineering, 2017, 37(7): 41-45. (in Chinese) doi: 10.3969/j.issn.1672-9730.2017.07.011 [21] 全国声学标准化技术委员会. 声学 标准水听器: GB/T 4128—1995[S]. 北京: 国家技术监督局, 1995. National Acoustic Standardization Technical Committee. Acoustics—Standard hydrophone: GB/T 4128—1995[S]. Beijing: The State Bureau of Quality and Technical Supervision, 1995. (in Chinese) -