Assessment of life risk due to flood overtopping of concrete dam
-
摘要: 对混凝土大坝洪水漫顶的生命风险评价方法进行研究,以改进传统的评价方法。提出基于Copula函数和三点式变倍比放大法来随机生成年最大入库洪水过程线概率序列的峰量双变量分析方法,同时进行生命风险的评估;并对溃坝生命风险评价标准进行研究,以得出更符合我国大坝现状的生命风险评估标准。以贵州某水电站为例,对其加固后的洪水漫顶生命损失进行评估,依据风险标准进行生命损失风险评价,结果显示加固后该水电站拱坝洪水漫顶对下游村镇造成生命损失的风险较小,属于社会可接受范围。混凝土坝洪水漫顶生命风险评价的方法考虑了洪水特征量间的相互关系,所得洪水发生概率更加贴合实际。Abstract: The life risk assessment method for flood overtopping of concrete dam is studied and the traditional assessment method is improved in this paper. Based on the Copula function and the three-point variable-ratio amplification method, a bivariate analysis method of peak-volume is proposed to generate the random sequence of annual maximum flood hydrograph, and then the life risk is assessed. The life risk assessment criteria for dam break are studied and a proper one is proposed to suit the current situation of dams in China. Taking a hydropower station in Guizhou province as an example, the life loss due to flood overtopping is evaluated for the retaining dam after reinforcement, and the life loss risk is assessed according to the risk criterion. Results show that the life risk due to flood overflow in the downstream area of the hydropower station is small and within the socially acceptable range. In conclusion, considering the relationship among flood characteristics, the flood occurrence probability calculated by the proposed risk assessment method is more consistent with the reality.
-
表 1 Archimedean Copula函数参数
$ \theta $ 与Kendall相关系数$ \tau $ 的关系Table 1. Relationship between Archimedean Copula function parameter and Kendall rank correlation coefficient
Copula类型 Copula函数表达式 θ τ Gumbel-Hougaard $ \exp \left\{ { - {{\left[ {{{\left( { - \ln u} \right)}^\theta } + {{\left( { - \ln v} \right)}^\theta }} \right]}^{1/\theta }}} \right\} $ $ \left[ {1,\infty } \right] $ $ 1 - {\theta ^{ - 1}} $ Clayton $ {\left( {{u^{ - \theta }} + {v^{ - \theta }} - 1} \right)^{ - 1/\theta }} $ $ \left( {0,\infty } \right) $ $ \theta /\left( {\theta + 2} \right) $ Frank $- \dfrac{1}{\theta }\ln \left[ {1 + \dfrac{ {\left( { {\text{exp(} } - \theta u) - 1} \right)\left( { {\text{exp(} } - \theta v) - 1} \right)} }{ { {\text{exp(} } - \theta ) - 1} } } \right]$ $ R\backslash \left\{ 0 \right\} $ $1 + \dfrac{4}{\theta }\left[ {\dfrac{1}{\theta }\displaystyle\int\limits_0^\theta {\dfrac{t}{ {\exp \left( t \right) - 1} }{\text{d} }t - 1} } \right]$ 表 2 各村镇信息
Table 2. Information of villages and towns
村镇 平均海拔高程/m 人口/人 SJ村 240 1 148 SZ村 240 1 709 ZG村 250 1 248 表 3 SJ村受灾严重性
Table 3. Severity of the disaster in SJ village
各年最大入库洪水
过程线概率洪水严重性/ (m2·s−1) 生命损失/人 总死亡
人数/人死亡率 测点S1 测点S2 测点S3 测点S4 测点S5 测点S1 测点S2 测点S3 测点S4 测点S5 1.0×10−5 0.83 0.89 0.19 0.34 0 0.017 0.150 0.058 0.058 0 0.283 2.47×10−4 2.0×10−5 0.11 0.07 0.01 0 0 0.017 0.150 0.058 0 0 0.225 1.96×10−4 3.0×10−5 0.17 0.07 0.05 0 0 0.017 0.150 0.058 0 0 0.225 1.96×10−4 4.0×10−5 0.05 0.02 0 0 0 0.017 0.150 0 0 0 0.167 1.45×10−4 5.0×10−5 0.08 0.07 0 0 0 0.017 0.150 0 0 0 0.167 1.45×10−4 7.0×10−5 0 0 0 0 0 0 0 0 0 0 0 0 8.0×10−5 0 0 0 0 0 0 0 0 0 0 0 0 -
[1] 中华人民共和国水利部. 2019年全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2020. Ministry of Water Resources of the People’s Republic of China. 2019 statistic bulletin on China water activities[M]. Beijing: China Water Power Press, 2020. (in Chinese) [2] 赵雪莹, 王昭升, 盛金保. 梯级水库溃坝洪水模拟[J]. 人民长江,2017,48(11):32-35. (ZHAO Xueying, WANG Zhaosheng, SHENG Jinbao. Simulation of dam-break flood for cascade reservoirs[J]. Yangtze River, 2017, 48(11): 32-35. (in Chinese) [3] 邹鹰. 中小型水库防洪标准对比研究及对策建议[J]. 水利水运工程学报,2021(1):1-8. (ZOU Ying. A comparative study of flood control standards for small and medium-sized reservoirs and recommendation[J]. Hydro-Science and Engineering, 2021(1): 1-8. (in Chinese) doi: 10.12170/20200503003 [4] 盛金保, 厉丹丹, 蔡荨, 等. 大坝风险评估与管理关键技术研究进展[J]. 中国科学: 技术科学,2018,48(10):1057-1067. (SHENG Jinbao, LI Dandan, CAI Qian, et al. Research progress and its practice of key techniques for dam risk assessment and management[J]. Scientia Sinica (Technologica), 2018, 48(10): 1057-1067. (in Chinese) doi: 10.1360/N092018-00277 [5] 李宏恩, 盛金保, 何勇军. 近期国际溃坝事件对我国大坝安全管理的警示[J]. 中国水利,2020(16):19-22,30. (LI Hongen, SHENG Jinbao, HE Yongjun. Global dam break events raise an alert about dam safety management[J]. China Water Resources, 2020(16): 19-22,30. (in Chinese) [6] 李雷, 王仁钟, 盛金保, 等. 大坝风险评价与风险管理[M]. 北京: 中国水利水电出版社, 2006. LI Lei, WANG Renzhong, SHENG Jinbao, et al. Dam risk assessment and risk management[M]. Beijing: China Water Power Press, 2006. (in Chinese) [7] 何晓燕, 王兆印, 黄金池, 等. 中国水库大坝失事统计与初步分析[C]∥中国水利学会. 中国水利学会2005学术年会论文集——水旱灾害风险管理. 北京: 中国水利水电出版社, 2005: 329-338 HE Xiaoyan, WANG Zhaoyin, HUANG Jinchi, et al. China dam accident statistics and preliminary analysis[C]∥Chinese Hydraulic Engineering Society. Proceedings of 2005 academic annual meeting of China hydraulic society—Flood and drought disaster risk management. Beijing: China Water & Power Press, 2005: 329-338. (in Chinese) [8] 彭雪辉, 盛金保, 李雷, 等. 我国水库大坝风险标准制定研究[J]. 水利水运工程学报,2014(4):7-13. (PENG Xuehui, SHENG Jinbao, LI Lei, et al. Research on dam risk criteria of China[J]. Hydro-Science and Engineering, 2014(4): 7-13. (in Chinese) doi: 10.3969/j.issn.1009-640X.2014.04.002 [9] 张建云, 杨正华, 蒋金平. 我国水库大坝病险及溃决规律分析[J]. 中国科学:技术科学,2017,47(12):1313-1320. (ZHANG Jianyun, YANG Zhenghua, JIANG Jinping. An analysis on laws of reservoir dam defects and breaches in China[J]. Scientia Sinica (Technologica), 2017, 47(12): 1313-1320. (in Chinese) doi: 10.1360/N092016-00295 [10] 顾冲时, 苏怀智. 混凝土坝工程长效服役与风险评定研究述评[J]. 水利水电科技进展,2015,35(5):1-12. (GU Chongshi, SU Huaizhi. Current status and prospects of long-term service and risk assessment of concrete dams[J]. Advances in Science and Technology of Water Resources, 2015, 35(5): 1-12. (in Chinese) doi: 10.3880/j.issn.1006-7647.2015.05.001 [11] 朱伯芳. 论混凝土坝的使用寿命及实现混凝土坝超长期服役的可能性[J]. 水利学报,2012,43(1):1-9. (ZHU Bofang. On the expected life span of concrete dams and the possibility of endlessly long life of solid concrete dams[J]. Journal of Hydraulic Engineering, 2012, 43(1): 1-9. (in Chinese) [12] 郭生练, 刘章君, 熊立华. 设计洪水计算方法研究进展与评价[J]. 水利学报,2016,47(3):302-314. (GUO Shenglian, LIU Zhangjun, XIONG Lihua. Advances and assessment on design flood estimation methods[J]. Journal of Hydraulic Engineering, 2016, 47(3): 302-314. (in Chinese) [13] 胡泽林, 程井, 刘晓青, 等. LHS-MC与Copula函数在洪水漫坝率计算中的应用[J]. 水电能源科学,2021,39(1):71-74. (HU Zelin, CHENG Jing, LIU Xiaoqing, et al. Calculation of flood overtopping rate based on LHS-MC method and Copula functions[J]. Water Resources and Power, 2021, 39(1): 71-74. (in Chinese) [14] 尹家波, 郭生练, 吴旭树, 等. 两变量设计洪水估计的不确定性及其对水库防洪安全的影响[J]. 水利学报,2018,49(6):715-724. (YIN Jiabo, GUO Shenglian, WU Xushu, et al. Uncertainty of bivariate design flood estimation and its impact on reservoir flood prevention[J]. Journal of Hydraulic Engineering, 2018, 49(6): 715-724. (in Chinese) [15] 肖义, 郭生练, 刘攀, 等. 基于Copula函数的设计洪水过程线方法[J]. 武汉大学学报(工学版),2007,40(4):13-17. (XIAO Yi, GUO Shenglian, LIU Pan, et al. Derivation of design flood hydrograph based on Copula function[J]. Engineering Journal of Wuhan University, 2007, 40(4): 13-17. (in Chinese) [16] 李天元. 基于Copula函数的设计洪水计算方法研究[D]. 武汉: 武汉大学, 2014. LI Tianyuan. Design flood estimation based on Copulas[D]. Wuhan: Wuhan University, 2014. (in Chinese) [17] 周克发. 溃坝生命损失分析方法研究[D]. 南京: 南京水利科学研究院, 2006. ZHOU Kefa. Study on the analysis method for loss of life due to dam breach dissertation for master degree of engineering[D]. Nanjing: Nanjing Hydraulic Research Institute, 2006. (in Chinese) [18] 李宗坤, 葛巍, 王娟, 等. 中国水库大坝风险标准与应用研究[J]. 水利学报,2015,46(5):567-573,583. (LI Zongkun, GE Wei, WANG Juan, et al. Risk criteria and application on reservoir dams in China[J]. Journal of Hydraulic Engineering, 2015, 46(5): 567-573,583. (in Chinese) -