留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混凝土梁四点弯曲试验的并发多尺度区域分解法模拟

邱莉婷 马福恒 沈振中 张湛 霍吉祥

邱莉婷,马福恒,沈振中,等. 混凝土梁四点弯曲试验的并发多尺度区域分解法模拟[J]. 水利水运工程学报,2022(3):145-152. doi:  10.12170/20210405001
引用本文: 邱莉婷,马福恒,沈振中,等. 混凝土梁四点弯曲试验的并发多尺度区域分解法模拟[J]. 水利水运工程学报,2022(3):145-152. doi:  10.12170/20210405001
(QIU Liting, MA Fuheng, SHEN Zhenzhong, et al. Concurrent multi-scale domain decomposition method for four-point bending test of concrete beam[J]. Hydro-Science and Engineering, 2022(3): 145-152. (in Chinese)) doi:  10.12170/20210405001
Citation: (QIU Liting, MA Fuheng, SHEN Zhenzhong, et al. Concurrent multi-scale domain decomposition method for four-point bending test of concrete beam[J]. Hydro-Science and Engineering, 2022(3): 145-152. (in Chinese)) doi:  10.12170/20210405001

混凝土梁四点弯曲试验的并发多尺度区域分解法模拟

doi: 10.12170/20210405001
基金项目: 中央级公益性科研院所基本科研业务费专项资金项目(Y720004)
详细信息
    作者简介:

    邱莉婷(1986—),女,广西桂林人,高级工程师,博士,主要从事混凝土材料损伤分析的多尺度数值计算。E-mail:ltqiu@nhri.cn

  • 中图分类号: TV311

Concurrent multi-scale domain decomposition method for four-point bending test of concrete beam

  • 摘要: 损伤在准脆性混凝土材料的非线性力学特性中占有重要地位。但有限单元法计算采用局部损伤模型时存在网格敏感性和零能耗问题。同时,传统单一网格有限元模型难以对构件的线弹性区域和非线性区域进行区别处理,无法将有限的计算资源集中在重点关注区域。通过局部子区域预设高精度有限元网格和引入尺度间线性多点约束法,实现并发多尺度方法和整体有限元撕裂对接法的结合,采用隐式梯度损伤模型描述混凝土材料的非线性本构关系,运用双重组装并行直接求解法进行模型的大型线性方程组求解,完成了混凝土损伤失效分析的并发多尺度区域分解模型构建。将该模型用于混凝土单边切口梁的四点弯曲试验模拟,并对可能损伤的纯弯拉区域分别采用了3种不同尺寸的有限元网格计算。算例分析表明,模型合理可靠且不具网格敏感性,能够重现混凝土的损伤失效全过程,可为混凝土构件开展损伤失效全过程分析提供多尺度数值模拟技术支持。
  • 图  1  混凝土单边切口梁四点弯曲试验的几何及边界条件示意(单位:mm)

    Figure  1.  Geometry and boundary conditions for four-point bending test (unit: mm)

    图  2  混凝土单边切口梁子区域分解及有限元网格剖分示意(单位:mm)

    Figure  2.  Domain decompostion and finite element of four-point bending beam (unit: mm)

    图  3  混凝土单边切口梁四点弯曲试验的损伤扩展过程(h=1.250 mm)

    Figure  3.  Damage evolution of four-point bending beam (h=1.250 mm)

    图  4  Simone文献混凝土单边切口梁四点弯曲试验的损伤扩展过程(h=5.000 mm)[16]

    Figure  4.  Damage evolution of four-point bending test in the paper of Simone (h=5.000 mm)[16]

    图  5  混凝土单边切口梁四点弯曲试验的非局部等效应变发展(h=1.250 mm)

    Figure  5.  Nolacal equivalent strain evolution of four-point bending beam (h=1.250 mm)

    图  6  混凝土单边切口梁四点弯曲试验的荷载-竖向位移曲线

    Figure  6.  Load-deflection curves of four-point bending beam

  • [1] 张立, 李广凯, 马怀发. 混凝土类材料弹塑性损伤问题的全隐式迭代法[J]. 水利学报,2020,51(8):947-956. (ZHANG Li, LI Guangkai, MA Huaifa. Full implicit iterative method for elastoplastic damage of concrete-like materials[J]. Journal of Hydraulic Engineering, 2020, 51(8): 947-956. (in Chinese)

    ZHANG Li, LI Guangkai, MA Huaifa. Full implicit iterative method for elastoplastic damage of concrete-like materials[J]. Journal of Hydraulic Engineering, 2020, 51(8): 947-956. (in Chinese)
    [2] 刘军. 混凝土损伤本构模型研究及其数值实现[D]. 大连: 大连理工大学, 2012.

    LIU Jun. A study on the damage constitutive model for concrete and its numerical implementation[D]. Dalian: Dalian University of Technology, 2012. (in Chinese)
    [3] 林皋, 刘军, 胡志强. 混凝土损伤类本构关系研究现状与进展[J]. 大连理工大学学报,2010,50(6):1055-1064. (LIN Gao, LIU Jun, HU Zhiqiang. Current situation and progress of research on damage constitutive relation of concrete[J]. Journal of Dalian University of Technology, 2010, 50(6): 1055-1064. (in Chinese) doi:  10.7511/dllgxb201006039

    LIN Gao, LIU Jun, HU Zhiqiang. Current situation and progress of research on damage constitutive relation of concrete[J]. Journal of Dalian University of Technology, 2010, 50(6): 1055-1064. (in Chinese) doi:  10.7511/dllgxb201006039
    [4] 汪忠明, 牛晓玉, 杨伯源. 基于非局部隐式梯度模型的混凝土断裂损伤[J]. 中国科学技术大学学报,2010,40(6):651-656. (WANG Zhongming, NIU Xiaoyu, YANG Boyuan. Fracture and damage of concrete material based on the implicit gradient model[J]. Journal of University of Science and Technology of China, 2010, 40(6): 651-656. (in Chinese) doi:  10.3969/j.issn.0253-2778.2010.06.019

    WANG Zhongming, NIU Xiaoyu, YANG Boyuan. Fracture and damage of concrete material based on the implicit gradient model[J]. Journal of University of Science and Technology of China, 2010, 40(6): 651-656. (in Chinese) doi:  10.3969/j.issn.0253-2778.2010.06.019
    [5] 杨强, 吴浩, 周维垣. 大坝有限元分析应力取值的研究[J]. 工程力学,2006,23(1):69-73. (YANG Qiang, WU Hao, ZHOU Weiyuan. Stress evaluation in finite element analysis of dams[J]. Engineering Mechanics, 2006, 23(1): 69-73. (in Chinese) doi:  10.3969/j.issn.1000-4750.2006.01.014

    YANG Qiang, WU Hao, ZHOU Weiyuan. Stress evaluation in finite element analysis of dams[J]. Engineering Mechanics, 2006, 23(1): 69-73. (in Chinese) doi:  10.3969/j.issn.1000-4750.2006.01.014
    [6] 陈志文, 李兆霞, 卫志勇. 土木结构损伤多尺度并发计算方法及其应用[J]. 工程力学,2012,29(10):205-210. (CHEN Zhiwen, LI Zhaoxia, WEI Zhiyong. Concurrent multi-scale computational method for damage analyses of civil structures[J]. Engineering Mechanics, 2012, 29(10): 205-210. (in Chinese) doi:  10.6052/j.issn.1000-4750.2011.01.0053

    CHEN Zhiwen, LI Zhaoxia, WEI Zhiyong. Concurrent multi-scale computational method for damage analyses of civil structures[J]. Engineering Mechanics, 2012, 29(10): 205-210. (in Chinese) doi:  10.6052/j.issn.1000-4750.2011.01.0053
    [7] 陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展[J]. 固体力学学报,2018,39(1):1-68. (CHEN Yuli, MA Yong, PAN Fei, et al. Research progress in multi-scale mechanics of composite materials[J]. Chinese Journal of Solid Mechanics, 2018, 39(1): 1-68. (in Chinese)

    CHEN Yuli, MA Yong, PAN Fei, et al. Research progress in multi-scale mechanics of composite materials[J]. Chinese Journal of Solid Mechanics, 2018, 39(1): 1-68. (in Chinese)
    [8] DOSTÁL Z, HORÁK D, KUČERA R. Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE[J]. Communications in Numerical Methods in Engineering, 2006, 22(12): 1155-1162. doi:  10.1002/cnm.881
    [9] 宛汀, 朱剑, 陈如山. 有限元边界积分结合撕裂对接法分析电磁散射[J]. 系统工程与电子技术,2010,32(9):1854-1858. (WAN Ting, ZHU Jian, CHEN Rushan. Analysis of electromagnetic scattering problems by combining FEBI with FETI method[J]. Systems Engineering and Electronics, 2010, 32(9): 1854-1858. (in Chinese) doi:  10.3969/j.issn.1001-506X.2010.09.15

    WAN Ting, ZHU Jian, CHEN Rushan. Analysis of electromagnetic scattering problems by combining FEBI with FETI method[J]. Systems Engineering and Electronics, 2010, 32(9): 1854-1858 (in Chinese) doi:  10.3969/j.issn.1001-506X.2010.09.15
    [10] PEERLINGS R H J. Enhanced damage modelling for fracture and fatigue[D]. Eindhoven: Technische Universiteit Eindhoven, 1999.
    [11] LLOBERAS-VALLS O, RIXEN D J, SIMONE A, et al. On micro-to-macro connections in domain decomposition multiscale methods[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 225-228: 177-196. doi:  10.1016/j.cma.2012.03.022
    [12] 陈星玎, 曹显兵, 刘曼曼. 基于几何非协调分解的区域分解方法误差分析[J]. 数学的实践与认识,2011,41(14):234-238. (CHEN Xingding, CAO Xianbing, LIU Manman. The error analysis of domain decomposition methods based on geometrically nonconforming decompositions[J]. Mathematics in Practice and Theory, 2011, 41(14): 234-238. (in Chinese)

    CHEN Xingding, CAO Xianbing, LIU Manman. The error analysis of domain decomposition methods based on geometrically nonconforming decompositions[J]. Mathematics in Practice and Theory, 2011, 41(14): 234-238. (in Chinese)
    [13] DICKOPF T, GANDER M T, HALPERN L, et al. Domain decomposition methods in science and engineering XXII[M]. Cham: Springer, 2016: 197-205.
    [14] 王胜昌, 汤井田, 肖晓, 等. 基于MPI和OpenMP可控源电磁法三维有限元正演并行模拟[J]. 工程地球物理学报,2017,14(5):507-518. (WANG Shengchang, TANG Jingtian, XIAO Xiao, et al. Parallel simulation of 3D finite element forward modeling based on MPI+OpenMP controlled source electromagnetic method[J]. Chinese Journal of Engineering Geophysics, 2017, 14(5): 507-518. (in Chinese) doi:  10.3969/j.issn.1672-7940.2017.05.001

    WANG Shengchang, TANG Jingtian, XIAO Xiao, et al. Parallel simulation of 3D finite element forward modeling based on MPI+OpenMP controlled source electromagnetic method[J]. Chinese Journal of Engineering Geophysics, 2017, 14(5): 507-518. (in Chinese) doi:  10.3969/j.issn.1672-7940.2017.05.001
    [15] HORDIJK D A. Local approach to fatigue of concrete[D]. Delft: Delft University of Technology, 1991.
    [16] SIMONE A, WELLS G N, SLUYS L J. From continuous to discontinuous failure in a gradient-enhanced continuum damage model[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(41/42): 4581-4607.
  • [1] 齐翠阁, 邱莉婷, 马福恒, 张湛, 李子阳.  大坝混凝土非连续变形的并发多尺度区域分解法 . 水利水运工程学报, 2022, (): 1-8. doi: 10.12170/20220826001
    [2] 姜彦彬, 何宁, 许滨华, 张中流, 耿之周, 石北啸.  桩承式加筋路堤有限元几何建模方法及边坡效应研究 . 水利水运工程学报, 2020, (1): 84-91. doi: 10.12170/20181206001
    [3] 魏博文, 袁冬阳, 蔡磊, 温勇兵, 徐镇凯.  基于BP-ARIMA的混凝土坝多尺度变形组合预报模型 . 水利水运工程学报, 2018, (2): 52-60. doi: 10.16198/j.cnki.1009-640X.2018.02.007
    [4] 何玲丽, 田东方.  考虑径流补给的滑坡渗流三维有限元模拟 . 水利水运工程学报, 2017, (4): 105-111. doi: 10.16198/j.cnki.1009-640X.2017.04.015
    [5] 贡金鑫, 高树飞, 陈浩群, 沈雪松.  桶式基础气压模型试验和有限元分析 . 水利水运工程学报, 2015, (5): 21-29.
    [6] 李泰儒,赵明登,彭晓春,槐文信.  二维扩散方程的9点格式有限近似解法 . 水利水运工程学报, 2011, (2): -.
    [7] 陈铁林,沈珠江,周成.  用大变形有限元对土体静力触探的数值模拟 . 水利水运工程学报, 2004, (2): 1-6.
    [8] 王祥来,李同春.  异形弹性基础板的有限元分析 . 水利水运工程学报, 2002, (1): 49-51.
    [9] 唐洪祥,邵龙潭,宋春红.  正弦波作用下模型坝的有限元边坡稳定分析 . 水利水运工程学报, 2002, (4): 20-23.
    [10] 孙逊,高明.  基于随机有限元方法的拱坝可靠性分析 . 水利水运工程学报, 1995, (1): -.
    [11] 徐光明,章为民,蔡飞,赖忠中.  岸坡稳定的离心模型试验和有限元计算分析 . 水利水运工程学报, 1995, (4): -.
    [12] 孙逊,高明.  改进的随机有限元方法 . 水利水运工程学报, 1993, (1): -.
    [13] 周正明.  饱和土体大变形固结有限元分析 . 水利水运工程学报, 1992, (1): -.
    [14] 洪晓林.  混凝土拱坝三维有限元非线性分析与应用 . 水利水运工程学报, 1985, (3): -.
    [15] 李浩麟,易家豪.  河口浅水方程的隐式和显式有限元解法 . 水利水运工程学报, 1984, (1): -.
    [16] 丁方中,许协庆.  溢流坝顶闸下出流的有限元分析 . 水利水运工程学报, 1983, (2): -.
    [17] 沈任工.  侧向受载桩的有限元分析 . 水利水运工程学报, 1983, (2): -.
    [18] 宋敬廷.  厚壳有限元分析中几何参数自动生成的探讨 . 水利水运工程学报, 1983, (1): -.
    [19] 李浩麟,易家豪.  河口浅水方程的隐式和显式有限元解法 . 水利水运工程学报, 1983, (1): -.
    [20] 易家豪.  疏浚抛泥扩散的二元有限元计算 . 水利水运工程学报, 1982, (4): -.
  • 加载中
图(6)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  82
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-05
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-07-03

/

返回文章
返回