[1]
|
LIU L B, GUDMUNDSSON L, HAUSER M, et al. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nature Communications, 2020, 11(1): 4892. doi: 10.1038/s41467-020-18631-1 |
[2]
|
PETROPOULOS G P, IRELAND G, BARRETT B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends[J]. Physics and Chemistry of the Earth, 2015, 83/84: 36-56. doi: 10.1016/j.pce.2015.02.009 |
[3]
|
覃艺, 张廷斌, 易桂花, 等. 2000年以来内蒙古生长季旱情变化遥感监测及其影响因素分析[J]. 自然资源学报,2021,36(2):459-475. (QIN Yi, ZHANG Tingbin, YI Guihua, et al. Remote sensing monitoring and analysis of influencing factors of drought in Inner Mongolia growing season since 2000[J]. Journal of Natural Resources, 2021, 36(2): 459-475. (in Chinese) doi: 10.31497/zrzyxb.20210215 |
[4]
|
KOLEY S, JEGANATHAN C. Estimation and evaluation of high spatial resolution surface soil moisture using multi-sensor multi-resolution approach[J]. Geoderma, 2020, 378: 114618. doi: 10.1016/j.geoderma.2020.114618 |
[5]
|
ABOWARDA A S, BAI L L, ZHANG C J, et al. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale[J]. Remote Sensing of Environment, 2021, 255: 112301. doi: 10.1016/j.rse.2021.112301 |
[6]
|
ZHU W B, JIA S F, LV A F. A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous soil moisture monitoring[J]. Remote Sensing of Environment, 2017, 200: 1-17. doi: 10.1016/j.rse.2017.07.032 |
[7]
|
SHI S Q, YAO F M, ZHANG J H, et al. Evaluation of temperature vegetation dryness index on drought monitoring over Eurasia[J]. IEEE Access, 2020, 8: 30050-30059. doi: 10.1109/ACCESS.2020.2972271 |
[8]
|
STISEN S, SANDHOLT I, NøRGAARD A, et al. Combining the triangle method with thermal inertia to estimate regional evapotranspiration-applied to MSG-SEVIRI data in the Senegal River basin[J]. Remote Sensing of Environment, 2008, 112(3): 1242-1255. doi: 10.1016/j.rse.2007.08.013 |
[9]
|
张新平, 乔治, 李皓, 等. 基于Landsat影像和不规则梯形方法遥感反演延安城市森林表层土壤水分[J]. 遥感技术与应用,2020,35(1):120-131. (ZHANG Xinping, QIAO Zhi, LI Hao, et al. Remotely sensed retrieving the surface soil moisture of Yan’an urban forest based on Landsat image and trapezoid method[J]. Remote Sensing Technology and Application, 2020, 35(1): 120-131. (in Chinese) |
[10]
|
秦毅, 李子文, 刘强, 等. 黄河内蒙段泥沙组成与力学运动特征[J]. 水利水运工程学报,2017(3):16-24. (QIN Yi, LI Ziwen, LIU Qiang, et al. Sediment fraction and its mechanic movement characteristics in Inner Mongolia reach of Yellow River[J]. Hydro-Science and Engineering, 2017(3): 16-24. (in Chinese) |
[11]
|
王国庆, 乔翠平, 刘铭璐, 等. 气候变化下黄河流域未来水资源趋势分析[J]. 水利水运工程学报,2020(2):1-8. (WANG Guoqing, QIAO Cuiping, LIU Minglu, et al. The future water resources regime of the Yellow River basin in the context of climate change[J]. Hydro-Science and Engineering, 2020(2): 1-8. (in Chinese) doi: 10.12170/20200216001 |
[12]
|
SANDHOLT I, RASMUSSEN K, ANDERSEN J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2/3): 213-224. |
[13]
|
YAN H B, ZHOU G Q, YANG F F, et al. DEM correction to the TVDI method on drought monitoring in karst areas[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2166-2189. |
[14]
|
JIMÉNEZ-MUÑOZ J C, SOBRINO J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D22): 4688. |
[15]
|
王猛猛, 何国金, 张兆明, 等. 基于Landsat 8 TIRS数据的大气水汽含量反演劈窗算法[J]. 遥感技术与应用,2017,32(1):166-172. (WANG Mengmeng, HE Guojin, ZHANG Zhaoming, et al. Atmospheric water vapor retrieval from Landsat-8 TIRS data using split-window algorithm[J]. Remote Sensing Technology and Application, 2017, 32(1): 166-172. (in Chinese) |
[16]
|
ZHANG X P, WANG D X, HAO H K, et al. effects of land use/cover changes and urban forest configuration on urban heat islands in a loess hilly region: case study based on Yan’an city, China[J]. International Journal of Environmental Research and Public Health, 2017, 14(8): 840. doi: 10.3390/ijerph14080840 |
[17]
|
CHEN T H K, PRISHCHEPOV A V, FENSHOLT R, et al. Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal Landsat imagery across Taiwan from 1998 to 2017[J]. Remote Sensing of Environment, 2019, 225: 317-327. doi: 10.1016/j.rse.2019.03.013 |
[18]
|
XIA L, SONG X N, LENG P, et al. A comparison of two methods for estimating surface soil moisture based on the triangle model using optical/thermal infrared remote sensing over the source area of the Yellow River[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2120-2137. |
[19]
|
XU H Q. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3025-3033. doi: 10.1080/01431160600589179 |
[20]
|
FEYISA G L, MEILBY H, FENSHOLT R, et al. Automated water extraction index: a new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140: 23-35. doi: 10.1016/j.rse.2013.08.029 |
[21]
|
徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报,2013,33(24):7853-7862. (XU Hanqiu. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24): 7853-7862. (in Chinese) |
[22]
|
ZENG W Z, XU C, HUANG J S, et al. Predicting near-surface moisture content of saline soils from near-infrared reflectance spectra with a modified Gaussian model[J]. Soil Science Society of America Journal, 2016, 80(6): 1496-1506. doi: 10.2136/sssaj2016.06.0188 |