留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Landsat时序影像和非线性边界监测土壤干旱研究

张新平 权全

张新平,权全. 基于Landsat时序影像和非线性边界监测土壤干旱研究——以1986—2020年黄河内蒙古段生长季为例[J]. 水利水运工程学报,2022(2):126-134. doi:  10.12170/20210411001
引用本文: 张新平,权全. 基于Landsat时序影像和非线性边界监测土壤干旱研究——以1986—2020年黄河内蒙古段生长季为例[J]. 水利水运工程学报,2022(2):126-134. doi:  10.12170/20210411001
(ZHANG Xinping, QUAN Quan. Soil drought monitoring based on Landsat time-series images and nonlinear edges: A case study of the growing season in Inner Mongolia section of the Yellow River from 1986 to 2020[J]. Hydro-Science and Engineering, 2022(2): 126-134. (in Chinese)) doi:  10.12170/20210411001
Citation: (ZHANG Xinping, QUAN Quan. Soil drought monitoring based on Landsat time-series images and nonlinear edges: A case study of the growing season in Inner Mongolia section of the Yellow River from 1986 to 2020[J]. Hydro-Science and Engineering, 2022(2): 126-134. (in Chinese)) doi:  10.12170/20210411001

基于Landsat时序影像和非线性边界监测土壤干旱研究

doi: 10.12170/20210411001
基金项目: 陕西省社会科学基金年度项目(2020N004)
详细信息
    作者简介:

    张新平(1981—),男,陕西柞水人,讲师,博士,主要从事景观生态、流域生态和城市林业的遥感监测与规划设计及科学计量研究。E-mail:zhang_xinping@xaut.edu.cn

  • 中图分类号: X87;TP79

Soil drought monitoring based on Landsat time-series images and nonlinear edges: A case study of the growing season in Inner Mongolia section of the Yellow River from 1986 to 2020

  • 摘要: 土壤温度植被干旱指数(TVDI)是表征土壤干旱状态的常用指标,土地利用/覆被(LULC)类型、LST-NDVI特征空间的干燥与湿润边界的非线性属性是TVDI遥感反演过程需要考虑的问题,然而前人的研究与应用大多忽视了这些条件,带来了部分误差。选取黄河流域典型资源驱动型河段内蒙古“几”字湾都市圈(呼包巴鄂乌五市)作为研究对象,以1986—2020年8期816景Landsat-5/8时序影像和同期30 m土地利用/覆被栅格数据为数据源,剔除建设用地和水体,采用无缝拼接和生长季均值合成重构LST-NDVI特征空间,在4类LULC下,非线性拟合干燥边界和湿润边界,反演得到8期经验证精度可靠的黄河内蒙古段的土壤表层干旱等级空间分布100 m栅格。研究结果可为区域性的土壤旱情预测提供理论参考和技术借鉴。
  • 图  1  研究区地理信息和所用Landsat影像行列号

    Figure  1.  Geographical information of study area and the path and row numbers of Landsat images

    图  2  被指数与地表温度特征空间和非线性干湿边界遥感反演TVDI原理示意

    Figure  2.  Vegetation index and surface temperature space and schematic diagram of TVDI remote sensing version based on the nonlinear dry and wet edges

    图  3  1986—2020年黄河内蒙古段4类土地利用下LST-NDVI特征空间干燥边界与湿润边界非线性拟合结果

    Figure  3.  Non-linear fitting results of dry edge and wet edge of LST-NDVI space in Inner Mongolia section of the Yellow River under four land use types from 1986 to 2020

    图  4  1986—2020年黄河内蒙古段TVDI空间分布和土地利用/覆被面积变化

    Figure  4.  Spatial distribution of TVDI and changes of land use/cove ratio in Inner Mongolia section of the Yellow River

    图  5  TVDI遥感反演精度评价结果

    Figure  5.  Evaluation results of TVDI remote sensing inversion accuracy

  • [1] LIU L B, GUDMUNDSSON L, HAUSER M, et al. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nature Communications, 2020, 11(1): 4892. doi:  10.1038/s41467-020-18631-1
    [2] PETROPOULOS G P, IRELAND G, BARRETT B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends[J]. Physics and Chemistry of the Earth, 2015, 83/84: 36-56. doi:  10.1016/j.pce.2015.02.009
    [3] 覃艺, 张廷斌, 易桂花, 等. 2000年以来内蒙古生长季旱情变化遥感监测及其影响因素分析[J]. 自然资源学报,2021,36(2):459-475. (QIN Yi, ZHANG Tingbin, YI Guihua, et al. Remote sensing monitoring and analysis of influencing factors of drought in Inner Mongolia growing season since 2000[J]. Journal of Natural Resources, 2021, 36(2): 459-475. (in Chinese) doi:  10.31497/zrzyxb.20210215
    [4] KOLEY S, JEGANATHAN C. Estimation and evaluation of high spatial resolution surface soil moisture using multi-sensor multi-resolution approach[J]. Geoderma, 2020, 378: 114618. doi:  10.1016/j.geoderma.2020.114618
    [5] ABOWARDA A S, BAI L L, ZHANG C J, et al. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale[J]. Remote Sensing of Environment, 2021, 255: 112301. doi:  10.1016/j.rse.2021.112301
    [6] ZHU W B, JIA S F, LV A F. A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous soil moisture monitoring[J]. Remote Sensing of Environment, 2017, 200: 1-17. doi:  10.1016/j.rse.2017.07.032
    [7] SHI S Q, YAO F M, ZHANG J H, et al. Evaluation of temperature vegetation dryness index on drought monitoring over Eurasia[J]. IEEE Access, 2020, 8: 30050-30059. doi:  10.1109/ACCESS.2020.2972271
    [8] STISEN S, SANDHOLT I, NøRGAARD A, et al. Combining the triangle method with thermal inertia to estimate regional evapotranspiration-applied to MSG-SEVIRI data in the Senegal River basin[J]. Remote Sensing of Environment, 2008, 112(3): 1242-1255. doi:  10.1016/j.rse.2007.08.013
    [9] 张新平, 乔治, 李皓, 等. 基于Landsat影像和不规则梯形方法遥感反演延安城市森林表层土壤水分[J]. 遥感技术与应用,2020,35(1):120-131. (ZHANG Xinping, QIAO Zhi, LI Hao, et al. Remotely sensed retrieving the surface soil moisture of Yan’an urban forest based on Landsat image and trapezoid method[J]. Remote Sensing Technology and Application, 2020, 35(1): 120-131. (in Chinese)
    [10] 秦毅, 李子文, 刘强, 等. 黄河内蒙段泥沙组成与力学运动特征[J]. 水利水运工程学报,2017(3):16-24. (QIN Yi, LI Ziwen, LIU Qiang, et al. Sediment fraction and its mechanic movement characteristics in Inner Mongolia reach of Yellow River[J]. Hydro-Science and Engineering, 2017(3): 16-24. (in Chinese)
    [11] 王国庆, 乔翠平, 刘铭璐, 等. 气候变化下黄河流域未来水资源趋势分析[J]. 水利水运工程学报,2020(2):1-8. (WANG Guoqing, QIAO Cuiping, LIU Minglu, et al. The future water resources regime of the Yellow River basin in the context of climate change[J]. Hydro-Science and Engineering, 2020(2): 1-8. (in Chinese) doi:  10.12170/20200216001
    [12] SANDHOLT I, RASMUSSEN K, ANDERSEN J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2/3): 213-224.
    [13] YAN H B, ZHOU G Q, YANG F F, et al. DEM correction to the TVDI method on drought monitoring in karst areas[J]. International Journal of Remote Sensing, 2019, 40(5/6): ‏ 2166-2189.
    [14] JIMÉNEZ-MUÑOZ J C, SOBRINO J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D22): 4688.
    [15] 王猛猛, 何国金, 张兆明, 等. 基于Landsat 8 TIRS数据的大气水汽含量反演劈窗算法[J]. 遥感技术与应用,2017,32(1):166-172. (WANG Mengmeng, HE Guojin, ZHANG Zhaoming, et al. Atmospheric water vapor retrieval from Landsat-8 TIRS data using split-window algorithm[J]. Remote Sensing Technology and Application, 2017, 32(1): 166-172. (in Chinese)
    [16] ZHANG X P, WANG D X, HAO H K, et al. effects of land use/cover changes and urban forest configuration on urban heat islands in a loess hilly region: case study based on Yan’an city, China[J]. International Journal of Environmental Research and Public Health, 2017, 14(8): 840. doi:  10.3390/ijerph14080840
    [17] CHEN T H K, PRISHCHEPOV A V, FENSHOLT R, et al. Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal Landsat imagery across Taiwan from 1998 to 2017[J]. Remote Sensing of Environment, 2019, 225: 317-327. doi:  10.1016/j.rse.2019.03.013
    [18] XIA L, SONG X N, LENG P, et al. A comparison of two methods for estimating surface soil moisture based on the triangle model using optical/thermal infrared remote sensing over the source area of the Yellow River[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2120-2137.
    [19] XU H Q. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3025-3033. doi:  10.1080/01431160600589179
    [20] FEYISA G L, MEILBY H, FENSHOLT R, et al. Automated water extraction index: a new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140: 23-35. doi:  10.1016/j.rse.2013.08.029
    [21] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报,2013,33(24):7853-7862. (XU Hanqiu. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24): 7853-7862. (in Chinese)
    [22] ZENG W Z, XU C, HUANG J S, et al. Predicting near-surface moisture content of saline soils from near-infrared reflectance spectra with a modified Gaussian model[J]. Soil Science Society of America Journal, 2016, 80(6): 1496-1506. doi:  10.2136/sssaj2016.06.0188
  • [1] 刘建华, 唐琦.  黄河流域水资源与产业升级互动关系研究 . 水利水运工程学报, 2022, (5): 31-39. doi: 10.12170/20210906002
    [2] 左其亭, 吴青松, 姜龙, 张伟.  黄河流域多尺度区域界定及其应用选择 . 水利水运工程学报, 2022, (5): 12-20. doi: 10.12170/20210923001
    [3] 秦天玲, 吕锡芝, 刘姗姗, 王建伟, 李晨昊, 冯贱明.  黄河流域水土资源联合配置技术框架 . 水利水运工程学报, 2022, (1): 28-36. doi: 10.12170/20211112003
    [4] 王国庆, 乔翠平, 刘铭璐, 杜付然, 叶腾飞, 王婕.  气候变化下黄河流域未来水资源趋势分析 . 水利水运工程学报, 2020, (2): 1-8. doi: 10.12170/20200216001
    [5] 申震洲, 姚文艺, 肖培青, 饶良懿, 李勉, 杨吉山, 焦鹏, 荆诚然.  黄河流域砒砂岩区地貌-植被-侵蚀耦合研究进展 . 水利水运工程学报, 2020, (4): 64-71. doi: 10.12170/20191229002
    [6] 管晓祥, 金君良, 黄爱明, 詹慧婕, 王国庆, 刘翠善.  黄河流域典型流域水文气象变化与径流过程模拟 . 水利水运工程学报, 2019, (5): 36-43. doi: 10.16198/j.cnki.1009-640X.2019.05.005
    [7] 秦毅, 李子文, 刘强, 李时, 陈星星.  黄河内蒙段泥沙组成与力学运动特征 . 水利水运工程学报, 2017, (3): 16-24. doi: 10.16198/j.cnki.1009-640X.2017.03.003
    [8] 宋智通,张子明,陈金杭,尹刚.  基于等效时间的非线性热传导方程及其工程应用 . 水利水运工程学报, 2008, (4): -.
    [9] 景继,王建,谷艳昌.  遗传算法在非线性最小一乘回归中的应用 . 水利水运工程学报, 2008, (2): -.
    [10] 杨令强,练继建,张社荣,陈祖坪.  混凝土拱坝线性开裂随机分析与非线性强度分析 . 水利水运工程学报, 2003, (1): 13-17.
    [11] 袁永生,朱庆平,赵学民,印凡成.  黄河下游水位过程预报中的非线性分析 . 水利水运工程学报, 2002, (4): 44-48.
    [12] 阎诗武.  巨型浮体闸门的非线性振荡 . 水利水运工程学报, 1995, (2): -.
    [13] 沈珠江.  结构性粘土的非线性损伤力学模型 . 水利水运工程学报, 1993, (3): -.
    [14] 金初阳,张秉友.  钢筋混凝土板的试验与非线性计算分析 . 水利水运工程学报, 1989, (2): -.
    [15] 童建波,高明.  侧向受载排桩的动力试验及非线性分析 . 水利水运工程学报, 1989, (4): -.
    [16] 左其华.  圆形墩柱上的非线性波浪力 . 水利水运工程学报, 1989, (4): -.
    [17] 谢晓华,沈珠江.  土石坝计算中非线性模型的改进 . 水利水运工程学报, 1988, (3): -.
    [18] 沈珠江.  考虑剪胀性的土和石料的非线性应力应变模式 . 水利水运工程学报, 1986, (4): -.
    [19] 洪晓林.  混凝土拱坝三维有限元非线性分析与应用 . 水利水运工程学报, 1985, (3): -.
    [20] 张云波.  有效应力法非线性变形计算在土石坝中的应用 . 水利水运工程学报, 1981, (2): -.
  • 加载中
图(5)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  74
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-11
  • 网络出版日期:  2022-01-18
  • 刊出日期:  2022-07-03

/

返回文章
返回