Surge characteristics and propagation of landslide near the dam in narrow river valley
-
摘要: 大比尺水工模型试验可获得更接近原型的相似现象,对窄深河谷近坝库区可能发生的整体大体积滑坡工况进行试验研究,结合三维数值模型分析滑坡次生涌浪的产生、传播和消散特性。研究结果表明:数值模型计算的浪高、相位与试验结果基本一致,库区涌浪类型属于有限水深波,波能沿水深方向均有分布;涌浪产生区附近非线性较强,受窄深地形影响,波高在传播过程中快速衰减,坝肩处涌浪叠加出现瞬时越浪;试验中涌浪近场波形只观测到弱非线性振荡波;试验范围内块体模型冲击动能转化率为2%~19%,滑块动能转化率与相对体积、相对厚度呈正相关,与滑块入水弗劳德数呈负相关;低频波受地形影响较大,在岸坡浅水区域出现波能的暂时集中,谱峰值增大,随时间推移库区水域高频波增多。对于窄深河谷中的大体积滑坡次生涌浪,尽管首浪波能受高陡边坡影响,传播至坝前时波高已明显削减,但坝前最大浪高往往由涌浪反射叠加形成,在首浪到达之后仍存在翻坝风险。Abstract: Large-scale hydraulic model tests can obtain similar phenomena closer to the prototype. We conducted experimental research on the overall large-scale landslide conditions that might occur in the near-dam reservoir area, and analyzed the generation, propagation and dissipation characteristics of surge caused by landslides in combination with a three-dimensional numerical model. The results show that the wave height and phase calculated by the numerical model are basically consistent with the experimental results. The type of surge in the reservoir area is a finite depth wave, and the wave energy is distributed along the depth of the water. The nonlinearity near the surge generation area is strong, and the wave height decays rapidly as it propagates; the superposition of surge at the dam abutment appears instantaneous surging. In the test, only weakly nonlinear oscillatory waves were observed in the near field waveform of surge waves. Under the experimental conditions, the impact kinetic energy conversion rate of the block model is about 2%~19%. The kinetic energy conversion rate of the slider is positively correlated with the relative volume and relative thickness, and negatively correlated with the Froude number. The low frequency wave is greatly affected by the topography, and the wave energy temporarily concentrates in the shallow water area of the bank slope, the spectral peak increases, and the high frequency wave composition increases with time passing. For narrow and deep valleys, surges are caused by large amount of landslides. Although the wave energy of the first wave is affected by the high and steep slope, the wave height in front of the dam is obviously reduced, but the maximum wave height in front of the dam is usually formed by reflection and superposition of surges. After the first wave arrives, there is still a risk of surges over the dam body.
-
Key words:
- reservoir bank landslide /
- surge characteristics /
- propagation rules /
- model test
-
表 1 不同影响因素试验工况
Table 1. Test conditions of different influencing factors
工况 $ V_{\rm{s}}/{\text{万}}{\rm m}^{3} $ 截面形状 $v_{\rm{s}}/({\rm{m}} \cdot {{\rm{s}}^{ - 1}})$ $V=V_{\rm{s}}/{h^3}$ $S=s/h$ $Fr=v_{\rm{s}}/\sqrt {gh} $ 1 50 等腰梯形 30.7 0.07 0.26 0.71 2 100 等腰梯形 33.5 0.15 0.26 0.78 3 200 等腰梯形 33.5 0.29 0.26 0.78 4 100 等腰梯形 21.9 0.15 0.26 0.51 5 100 等腰梯形 43.3 0.15 0.26 1.00 6 100 三角形1 32.4 0.15 0.37 0.75 7 100 三角形2 32.3 0.15 0.52 0.75 8 100 三角形3 31.3 0.15 0.52 0.73 注:h表示入水区域水深。 -
[1] 汪洋, 刘继芝娴, 张宇, 等. 基于物理模拟试验的滑坡涌浪波幅预测研究综述[J]. 华南地质与矿产,2018,34(4):279-288. (WANG Yang, LIU Jizhixian, ZHANG Yu, et al. Review of wave amplitude prediction generatedby landslide based on physical experiments[J]. Geology and Mineral Resources of South China, 2018, 34(4): 279-288. (in Chinese) [2] 彭辉, 吴凡, 金科, 等. 库岸滑坡涌浪首浪高度试验研究[J]. 水利水电技术,2017,48(12):95-100. (PENG Hui, WU Fan, JIN Ke, et al. Experimental study on head wave height of surge caused by landslide of reservoir bank[J]. Water Resources and Hydropower Engineering, 2017, 48(12): 95-100. (in Chinese) [3] 韩林峰, 王平义, 王梅力, 等. 碎裂岩体滑坡运动特征及近场涌浪变化规律[J]. 浙江大学学报(工学版),2019,53(12):2325-2334. (HAN Linfeng, WANG Pingyi, WANG Meili, et al. Motion characteristics of cataclastic rockslides and change rules of impulse waves in near-field zone[J]. Journal of Zhejiang University (Engineering Science Edition), 2019, 53(12): 2325-2334. (in Chinese) doi: 10.3785/j.issn.1008-973X.2019.12.009 [4] 王梅力, 祖福兴, 王平义, 等. 山区河道型水库滑坡涌浪首浪波能分析[J]. 水运工程,2020(4):79-83, 143. (WANG Meili, ZU Fuxing, WANG Pingyi, et al. Study on head wave energy of landslide surge in mountainous river reservoir[J]. Port & Waterway Engineering, 2020(4): 79-83, 143. (in Chinese) doi: 10.3969/j.issn.1002-4972.2020.04.014 [5] 黄锦林, 练继建, 张婷. 滑坡涌浪作用下乐昌峡大坝安全评估[J]. 水利水电技术,2013,44(11):93-97. (HUANG Jinlin, LIAN Jijian, ZHANG Ting. Safety assessment on Lechangxia Dam under surge effect caused by landslide[J]. Water Resources and Hydropower Engineering, 2013, 44(11): 93-97. (in Chinese) doi: 10.3969/j.issn.1000-0860.2013.11.025 [6] HUANG B L, YIN Y P, WANG S C, et al. A physical similarity model of an impulsive wave generated by Gongjiafang landslide in Three Gorges Reservoir, China[J]. Landslides, 2014, 11(3): 513-525. doi: 10.1007/s10346-013-0453-x [7] HUANG B L, ZHANG Q, WANG J, et al. Experimental study on impulse waves generated by gravitational collapse of rectangular granular piles[J]. Physics of Fluids, 2020, 32(3): 033301. doi: 10.1063/1.5138709 [8] NODA E. Water waves generated by landslides[J]. Journal of the Waterways, Harbors and Coastal Engineering Division, 1970, 96(4): 835-855. doi: 10.1061/AWHCAR.0000045 [9] FRITZ H M, HAGER W H, MINOR H E. Near field characteristics of landslide generated impulse waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2004, 130(6): 287-302. doi: 10.1061/(ASCE)0733-950X(2004)130:6(287) [10] MCFALL B C, FRITZ H M. Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2188): 20160052. doi: 10.1098/rspa.2016.0052 [11] 赵兰浩, 侯世超, 毛佳. 库区滑坡涌浪数值模拟方法研究进展[J]. 水利水电科技进展,2016,36(2):79-86. (ZHAO Lanhao, HOU Shichao, MAO Jia. Review of numerical simulation of landslides and surges in reservoir districts[J]. Advances in Science and Technology of Water Resources, 2016, 36(2): 79-86. (in Chinese) doi: 10.3880/j.issn.1006-7647.2016.02.015 [12] 黄筱云, 刘灿, 程永舟, 等. V型河道下滑坡涌浪的传播与爬高[J]. 长沙理工大学学报(自然科学版),2017,14(1):70-77. (HUANG Xiaoyun, LIU Can, CHENG Yongzhou, et al. Propagation and climb height of surge triggered by landslide in V-river[J]. Journal of Changsha University of Science and Technology (Natural Science), 2017, 14(1): 70-77. (in Chinese) [13] 邓成进, 党发宁, 陈兴周, 等. 库区滑坡涌浪三维数值模拟分析[J]. 水利水运工程学报,2020(6):64-71. (DENG Chengjin, DANG Faning, CHEN Xingzhou, et al. Three-dimensional numerical simulation analysis of landslide surge in reservoir area[J]. Hydro-Science and Engineering, 2020(6): 64-71. (in Chinese) [14] 马斌, 张涛, 李浩韡. 雅砻江流域滑坡涌浪对库区的影响[J]. 水利水运工程学报,2016(5):47-53. (MA Bin, ZHANG Tao, LI Haowei. Impacts of landslide-generated waves of Yalong River basin on reservoir area[J]. Hydro-Science and Engineering, 2016(5): 47-53. (in Chinese) [15] 邓成进, 袁秋霜, 侯延华, 等. 基于FLUENT的库区涌浪数值模拟[J]. 水利水运工程学报,2014(3):84-91. (DENG Chengjin, YUAN Qiushuang, HOU Yanhua, et al. Numerical simulation of the surge based on FLUENT software[J]. Hydro-Science and Engineering, 2014(3): 84-91. (in Chinese) doi: 10.3969/j.issn.1009-640X.2014.03.013 [16] 霍志涛, 黄波林, 张全, 等. 三峡库区黑石板滑坡涌浪分析[J]. 水利水电技术,2020,51(1):115-122. (HUO Zhitao, HUANG Bolin, ZHANG Quan, et al. Analysis of surge induced by Heishiban Landslide in Three Gorges Reservoir Area[J]. Water Resources and Hydropower Engineering, 2020, 51(1): 115-122. (in Chinese) [17] 邓成进, 党发宁, 陈兴周. 库区滑坡涌浪传播及其与大坝相互作用机理研究[J]. 水利学报,2019,50(7):815-823. (DENG Chengjin, DANG Faning, CHEN Xingzhou. Study on the surge wave propagation in the reservoir area and its interaction mechanism with the dam[J]. Journal of Hydraulic Engineering, 2019, 50(7): 815-823. (in Chinese) [18] 中华人民共和国水利部. 滑坡涌浪模拟技术规程: SL 165—2010[S]. 北京: 中国水利水电出版社, 2011. Ministry of Water Resources of the People's Republic of China. Regulation for simulation of landslide-generated waves: SL 165—2010[S]. Beijing: China Water Resources and Hydropower Press, 2011. (in Chinese) [19] MOHAMMED F, FRITZ H M. Physical modeling of tsunamis generated by three-dimensional deformable granular landslides[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C11015. [20] M'COWAN J. On the highest wave of permanent type[J]. Proceedings of the Edinburgh Mathematical Society, 1893, 12: 112. [21] KAMPHUIS J W, BOWERING R J. Impulse waves generated by landslides[J]. Coastal Engineering Proceedings, 1970, 1(12): 35. doi: 10.9753/icce.v12.35 [22] HUBER A. Schwallwellen in seen als folge von Felsstürzen[D]. Zürich: ETH Zürich, 1980. [23] HELLER V, BRUGGEMANN M, SPINNEKEN J, et al. HELLER V, BRUGGEMANN M, SPINNEKEN J, et al . Composite modelling of subaerial landslide-tsunamis in different water body geometries and novel insight into slide and wave kinematics[J]. Coastal Engineering, 2016, 109: 20-41. doi: 10.1016/j.coastaleng.2015.12.004 [24] WILLIAMS J M. Tables of progressive gravity waves[J]. Ocean Engineering, 1986, 13(6): 627. -