Simulation and comparison of clean water diversion schemes in Changzhou main urban area
-
摘要: 为了改善常州市主城区水环境,通过数值模拟计算与现场试验相结合的方法,开展畅流活水水环境提升方案研究。利用优质丰富的长江水作为引水水源,通过魏村枢纽和澡港水利枢纽引水,围绕新建工程大运河西枢纽及与4座活动堰工程的调度组合,设置了5组模拟方案,通过水动力数学模型,模拟各方案下城区内部河道流量分配情况,并结合现场试验论证了推荐活水方案的效果。结果表明:推荐方案形成了3级水位差、水位调控精准、流量分配合理的畅流活水格局,河网水环境改善显著,同时大部分水质指标在引水结束后16 d内均仍处于较好的状态,但部分河道的水质反弹明显。通过数学模型开展水动力调控是改善平原河网城市水环境的有效手段;但需要强化日常监测,根据水质变化情况合理确定活水周期,同时对部分水质异常点位开展污染源解析工作,保障河网水环境的长效久治。Abstract: In order to improve the water environment of the main urban area of Changzhou City, through the combination of numerical simulation calculation and field test, the research on the scheme of improving the water environment of smooth flowing water was carried out. Using high-quality and abundant water from the Yangtze River as the water diversion source, the Weicun water conservancy project and the Zaogang water conservancy project were used to divert water. Five groups of simulation schemes were set for the new project of Daxi project of the Dayun River and the dispatching combination with four movable weir projects. Through the hydrodynamic mathematical model, the flow distribution of the river in the urban area under each scheme was simulated. Based on the field test, the effect of the recommended scheme was demonstrated. The results show that the recommended scheme has formed a smooth flow pattern of three-level water level difference, accurate water level regulation and reasonable flow distribution, and the water environment of the river network has improved significantly. At the same time, most of the water quality indicators are still in a good state within 16 days after the end of water diversion, but the water quality of some rivers has rebounded significantly. It is an effective way to improve the water environment of plain river network cities to carry out hydrodynamic regulation through the mathematical model. However, it is necessary to strengthen daily monitoring, reasonably determine the living water cycle according to the water quality changes, and carry out pollution source analysis for some abnormal water quality points, so as to ensure the long-term treatment of river network water environment.
-
Key words:
- plain river network /
- water environment /
- clean water diversion /
- hydrodynamic /
- water quality /
- numerical simulation /
- field test
-
表 1 老城区内水质历次试验监测成果对比
Table 1. Comparison of water quality monitoring results of previous tests in old urban areas
监测点位名称 2017年5月 2018年7月 2018年11月 引水前 引水后 引水前 引水后 引水前 引水后 白龙桥(西市河) 劣Ⅴ类 Ⅲ类 劣Ⅴ类 Ⅲ类 Ⅳ类 Ⅱ类 红梅桥(北市河) 劣Ⅴ类 Ⅲ类 劣Ⅴ类 Ⅲ类 Ⅳ类 Ⅲ类 琢初桥(南市河) 劣Ⅴ类 Ⅴ类 劣Ⅴ类 Ⅴ类 劣Ⅴ类 Ⅲ类 龙晶桥(东市河) 劣Ⅴ类 Ⅲ类 劣Ⅴ类 Ⅳ类 劣Ⅴ类 Ⅲ类 表 2 计算方案
Table 2. Calculation schemes
工程名称 方案1 方案2 方案3 方案4 方案5 大运河西枢纽 关闸 开泵(10 m3/s,向东) 开泵(10 m3/s,向东) 开闸 开闸 盘龙苑活动堰 启用 启用 启用 启用 启用 恐龙园活动堰 启用 启用 启用 启用 启用 新市桥活动堰 启用 启用 不启用(完全卧倒) 启用 不启用(完全卧倒) 洋桥活动堰 启用 启用 不启用(完全卧倒) 启用 不启用(完全卧倒) 表 3 各方案下的河道流量分配
Table 3. River flow distribution of each scheme
单位:m3/s 区域 河道 不同方案的河道流量 方案1 方案2 方案3 方案4 方案5 Ⅰ区 柴支浜 2.3 2.4 2.1 2.2 2.2 西市河 10.3 9.2 1.8 11.0 2.1 Ⅱ区 采菱港 5.5 7.2 8.1 4.0 4.4 Ⅲ区 西界河 3.7 5.3 6.1 1.7 1.9 南童子河 4.8 6.8 7.8 2.5 2.8 南运河 5.4 6.8 6.9 4.0 4.0 白荡河 4.7 5.0 7.1 3.4 4.0 总流量 36.7 42.7 39.9 28.8 21.4 表 4 活水方案实施前后的河道流量对比
Table 4. Comparison of river flow before and after the field test
区域 监测点位 所在河道 2020年11月28日(引水期前) 2020年11月29日—12月7日平均值 2020年12月7—10日平均值 河道流量/
(m3·s−1)流速/
(m·s−1)河道流量/
(m3·s−1)流速/
(m·s−1)流量
提升倍数河道流量/
(m3·s−1)流速/
(m·s−1)流量
提升倍数Ⅰ区 许家塘桥 澡港河 8.20 0.06 37.90 0.28 4.62 37.90 0.28 4.62 盘龙苑桥 澡港河东支 2.70 0.03 5.50 0.06 2.04 5.50 0.06 2.04 泰山路桥 柴支浜 0.50 0.03 3.80 0.19 7.60 3.80 0.19 7.60 白龙桥 西市河 0.90 0.06 3.90 0.28 4.33 3.40 0.25 3.78 Ⅱ区 采菱港大桥 采菱港 8.80 0.09 13.40 0.14 1.52 13.00 0.13 1.48 Ⅲ区 金谷桥 南童子河 0.40 0 4.30 0.05 10.75 6.80 0.08 17.00 南运河桥 南运河 2.80 0.03 4.70 0.05 1.68 6.20 0.06 2.21 三维桥 西界河 0.60 0.01 4.00 0.07 6.67 5.60 0.09 9.33 表 5 活水前后水质对比
Table 5. Comparison of water quality before and after the field test
序号 区域 监测点位 所在河道 水质类别 序号 区域 监测点位 所在河道 水质类别 活水前
(11月26日)活水后
(12月10日)活水前
(11月26日)活水后
(12月10日)1 Ⅰ区 河海桥 澡港河 Ⅲ Ⅲ 11 Ⅲ区 大运河西枢纽 老运河 Ⅲ Ⅲ 2 白龙桥 西市河 劣Ⅴ Ⅲ 12 宣塘桥 南运河 Ⅴ Ⅲ 3 小东门北桥 关河 Ⅴ Ⅲ 13 广仁桥 白荡河 Ⅳ Ⅲ 4 许家塘桥 澡港河 Ⅲ Ⅱ 14 五星桥 老运河 Ⅴ Ⅲ 5 三井桥 三井河 Ⅳ Ⅲ 15 三维桥 西界河 Ⅲ Ⅲ 6 小运河桥 柴支浜 劣Ⅴ Ⅲ 16 阳湖桥 鹤溪河 Ⅴ Ⅲ 7 飞龙桥 澡港河 Ⅳ Ⅱ 17 金谷桥 南童子河 Ⅴ Ⅲ 8 北塘桥 北塘河 Ⅴ Ⅲ 18 云祥桥 后塘河 劣Ⅴ Ⅲ 9 狄墅桥 丁塘港 Ⅲ Ⅲ 19 三八桥 三八河 劣Ⅴ Ⅲ 10 Ⅱ区 菱港桥 采菱港 Ⅳ Ⅲ 20 张家桥 南童子河 Ⅴ Ⅲ -
[1] 于珊, 李一平, 程一鑫, 等. 调水引流工程对平原河网水动力调控的效果[J]. 湖泊科学,2021,33(2):462-473 doi: 10.18307/2021.0212 YU Shan, LI Yiping, CHENG Yixin, et al. The impacts of water diversion on hydrodynamic regulation of plain river network[J]. Journal of Lake Sciences, 2021, 33(2): 462-473. (in Chinese) doi: 10.18307/2021.0212 [2] XIA J, ZHAI X Y, ZENG S D, et al. Systematic solutions and modeling on eco-water and its allocation applied to urban river restoration: case study in Beijing, China[J]. Geohydrology and Hydrobiology, 2014, 14(1): 39-54. doi: 10.1016/j.ecohyd.2014.02.003 [3] 邹丛阳, 张维佳, 李欣华, 等. 城市河道水质恢复技术及发展趋势[J]. 环境科学与技术,2007,30(8):99-102, 121 doi: 10.3969/j.issn.1003-6504.2007.08.036 ZOU Congyang, ZHANG Weijia, LI Xinhua, et al. Remediation technology and development tendency for water quality of urban rivers[J]. Environmental Science & Technology, 2007, 30(8): 99-102, 121. (in Chinese) doi: 10.3969/j.issn.1003-6504.2007.08.036 [4] 袁兴程. 平原河网区河流水质改善关键技术与水环境治理方案研究[D]. 南京: 南京大学, 2012. YUAN Xingcheng. Study on technology of water quality improvement and water environment governance program for river in plain river network region[D]. Nanjing: Nanjing University, 2012. (in Chinese) [5] 李晓, 唐洪武, 王玲玲, 等. 平原河网地区闸泵群联合调度水环境模拟[J]. 河海大学学报(自然科学版),2016,44(5):393-399 LI Xiao, TANG Hongwu, WANG Lingling, et al. Simulation of water environment under joint operation of gates and pumps in plain river network area[J]. Journal of Hohai University (Natural Sciences), 2016, 44(5): 393-399. (in Chinese) [6] ZUO Q T, CHEN H, DOU M, et al. Experimental analysis of the impact of sluice regulation on water quality in the highly polluted Huai River Basin, China[J]. Environmental Monitoring and Assessment, 2015, 187(7): 450. doi: 10.1007/s10661-015-4642-z [7] YUAN D, ZHANG Y J, LIU J M, et al. Water quantity and quality joint-operation modeling of dams and floodgates in Huai River basin, China[J]. Journal of Water Resources Planning and Management, 2015, 141(9): 04015005. doi: 10.1061/(ASCE)WR.1943-5452.0000516 [8] 江涛, 朱淑兰, 张强, 等. 潮汐河网闸泵联合调度的水环境效应数值模拟[J]. 水利学报,2011,42(4):388-395 JIANG Tao, ZHU Shulan, ZHANG Qiang, et al. Numerical simulation on effects of gate-pump joint operation on water environment in tidal river network[J]. Journal of Hydraulic Engineering, 2011, 42(4): 388-395. (in Chinese) [9] 张千发. 山东省胶东调水工程水系连通功能分析[J]. 水利规划与设计,2018(10):18-20, 37 doi: 10.3969/j.issn.1672-2469.2018.10.006 ZHANG Qianfa. Analysis of water system connectivity of Jiaodong water diversion project in Shandong Province[J]. Water Resources Planning and Design, 2018(10): 18-20, 37. (in Chinese) doi: 10.3969/j.issn.1672-2469.2018.10.006 [10] 柳杨, 范子武, 谢忱, 等. 常州市运北主城区畅流活水方案设计与现场验证[J]. 水利水运工程学报,2019(5):10-17 doi: 10.12170/201905002 LIU Yang, FAN Ziwu, XIE Chen, et al. Study on clean water diversion schemes to improve the water environment of Yunbei main urban area in Changzhou City[J]. Hydro-Science and Engineering, 2019(5): 10-17. (in Chinese) doi: 10.12170/201905002 [11] 洪昕, 柳杨, 范子武, 等. 常州市运北片主城区畅流活水工程运行效果评估[J]. 水利规划与设计,2020(6):108-112 doi: 10.3969/j.issn.1672-2469.2020.06.023 HONG Xin, LIU Yang, FAN Ziwu, et al. Assessment of operation effect of clean water diversion project of Yunbei main urban area in Changzhou City[J]. Water Resources Planning and Design, 2020(6): 108-112. (in Chinese) doi: 10.3969/j.issn.1672-2469.2020.06.023 [12] 潘小保, 范子武, 柳杨, 等. 闸泵堰联合调度下水质改善试验研究[J]. 水利规划与设计,2020(3):125-129 doi: 10.3969/j.issn.1672-2469.2020.03.028 PAN Xiaobao, FAN Ziwu, LIU Yang, et al. Experimental study on water quality improvement under the joint operation of gate pump weir[J]. Water Resources Planning and Design, 2020(3): 125-129. (in Chinese) doi: 10.3969/j.issn.1672-2469.2020.03.028 -