留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特高拱坝施工期谷幅变形演化规律

王文娟 纪丁愈 李云祯

王文娟,纪丁愈,李云祯. 特高拱坝施工期谷幅变形演化规律[J]. 水利水运工程学报,2022(3):82-89. doi:  10.12170/20210426001
引用本文: 王文娟,纪丁愈,李云祯. 特高拱坝施工期谷幅变形演化规律[J]. 水利水运工程学报,2022(3):82-89. doi:  10.12170/20210426001
(WANG Wenjuan, JI Dingyu, LI Yunzhen. Evolution law of valley deformation during construction of extra-high arch dam[J]. Hydro-Science and Engineering, 2022(3): 82-89. (in Chinese)) doi:  10.12170/20210426001
Citation: (WANG Wenjuan, JI Dingyu, LI Yunzhen. Evolution law of valley deformation during construction of extra-high arch dam[J]. Hydro-Science and Engineering, 2022(3): 82-89. (in Chinese)) doi:  10.12170/20210426001

特高拱坝施工期谷幅变形演化规律

doi: 10.12170/20210426001
基金项目: 国家自然科学基金资助项目(51879172);四川省水利厅专项项目(SKY2019-05)
详细信息
    作者简介:

    王文娟(1989—),女,河北张家口人,硕士,主要从事水利工程研究。E-mail:lovescmy@126.com

  • 中图分类号: TV642.4

Evolution law of valley deformation during construction of extra-high arch dam

  • 摘要: 跟踪分析高坝施工期谷幅变形,对确保高边坡稳定与大坝安全具有重要意义。基于某特高拱坝工程环境与地质结构,跟踪分析坝区两岸岩体变形监测数据,采用有限差分法,模拟分析谷幅变形演化规律,探讨了坝区施工期的谷幅变形演化规律与驱动因素。研究表明,坝后水垫塘谷幅变形规律表现为不同高程谷幅变化规律相似,收缩变形量与高程具有很好的正相关性,高程高的部位变形量相对较大;两岸均朝向河谷变形,与高程呈现正相关性,左岸变形速率略大于右岸;变形数值仿真结果与现场实测变形量值较接近。研究结果可为大坝后期正常蓄水提供参考依据。
  • 图  1  水电站近坝区

    Figure  1.  Near-dam area of hydropower station

    图  2  坝区岩体类型与断层带位置

    Figure  2.  Rock mass type and fault zone location in dam area

    图  3  地应力场边界条件

    Figure  3.  Boundary conditions of in-situ stress field

    图  4  X向位移结果等值线云图(单位: m)

    Figure  4.  X displacement isoline cloud picture (unit: m)

    图  5  总位移矢量场

    Figure  5.  Total displacement vector field

    图  6  横河向速度云图(单位:m/s)

    Figure  6.  Cross-river velocity nephogram (unit: m/s)

    图  7  总速度矢量场(单位:m/s)

    Figure  7.  Total velocity vector field (unit: m/s)

    图  8  谷幅变形监测

    Figure  8.  Valley width deformation monitoring

    图  9  谷幅驱动成因示意

    Figure  9.  Schematic diagram of valley driving cause

    表  1  岩体质量分类

    Table  1.   Classification of rock mass quality

    基本质量级别岩体基本质量的定性特征岩体基本质量指标(BQ)
    坚硬岩,岩体完整 >550
    坚硬岩,岩体较完整;较坚硬岩,岩体完整 550~451
    坚硬岩,岩体较破碎;较坚硬岩或软硬岩互层,岩体较完整;较软岩,岩体完整 450~351
    坚硬岩,岩体破碎;较坚硬岩,岩体较破碎~破碎;较软岩或软硬岩互层,且以软岩为主;岩体较完整~较破碎;软岩,岩体完整~较完整 350~251
    较软岩,岩体破碎;软岩,岩体较破碎~破碎;全部极软岩及全部极破碎岩 ≤250
    下载: 导出CSV

    表  2  坝体及基础主要力学参数

    Table  2.   Mechanical parameter values of dam and foundation

    材料密度/
    (kg·m−3)
    泊松比弹性模量/
    GPa
    抗剪
    强度
    黏聚力/
    MPa
    混凝土2 4000.1724.01.435.00
    Ⅱ12 7500.1825.01.111.80
    Ⅱ22 7500.2216.01.001.00
    Ⅲ12 4000.2610.00.840.80
    Ⅲ22 4000.288.00.780.50
    F422 2000.300.40.400.07
    下载: 导出CSV
  • [1] SUN S A, XIANG A M, ZHU P, et al. Gravity change and its mechanism after the first water impoundment in Three Gorges project[J]. Acta Seismologica Sinica, 2006, 19(5): 522-529. doi:  10.1007/s11589-006-0505-6
    [2] ZHANG G X, LIU Y, ZHENG C Y, et al. Simulation of influence of multi-defects on long-term working performance of high arch dam[J]. Science China Technological Sciences, 2011, 54(1): 1-8. doi:  10.1007/s11431-010-4196-9
    [3] TOMIDA N, SATO N, SODA H, et al. Estimation of rockfill dam behavior during impounding by elasto-plastic model[M]∥SCHLEISS A J, BOES R M. Dams and Reservoirs under Changing Challenges. London: CRC Press, 2011: 27-34.
    [4] SCHLEISS A J, BOES R M. Dams and reservoirs under changing challenges[M]. London: CRC Press, 2011.
    [5] 杨杰, 胡德秀, 关文海. 李家峡拱坝左岸高边坡岩体变位与安全性态分析[J]. 岩石力学与工程学报,2005,24(19):3551-3560. (YANG Jie, HU Dexiu, GUAN Wenhai. Analysis of high slope rock deformation and safety performance for left bank of Lijiaxia arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3551-3560. (in Chinese) doi:  10.3321/j.issn:1000-6915.2005.19.025

    YANG Jie, HU Dexiu, GUAN Wenhai. Analysis of high slope rock deformation and safety performance for left bank of Lijiaxia Arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3551-3560. (in Chinese) doi:  10.3321/j.issn:1000-6915.2005.19.025
    [6] 杨强, 潘元炜, 程立, 等. 高拱坝谷幅变形机制及非饱和裂隙岩体有效应力原理研究[J]. 岩石力学与工程学报,2015,34(11):2258-2269. (YANG Qiang, PAN Yuanwei, CHENG Li, et al. Mechanism of valley deformation of high arch dam and effective stress principle for unsaturated fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2258-2269. (in Chinese)

    YANG Qiang, PAN Yuanwei, CHENG Li, et al. Mechanism of valley deformation of high arch dam and effective stress principle for unsaturated fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2258-2269. (in Chinese)
    [7] 刘有志, 张国新, 程恒, 等. 特高拱坝谷幅缩窄成因及对大坝变形和应力的影响分析[C]∥高坝建设与运行管理的技术进展——中国大坝协会2014学术年会论文集. 贵阳: 中国大坝学会, 2014: 51-60.

    LIU Youzhi, ZHANG Guoxin, CHENG Heng, et al. Analysis of the causes of valley width narrowing and its influence on dam deformation and stress[C]∥Technical Progress of High Dam Construction and Operation Management—Proceedings of the 2014 Annual Conference of China Dam Association. Guiyang: China Dam Society, 2014: 51-60. (in Chinese)
    [8] 张金龙, 徐卫亚, 金海元, 等. 大型复杂岩质高边坡安全监测与分析[J]. 岩石力学与工程学报,2009,28(9):1819-1827. (ZHANG Jinlong, XU Weiya, JIN Haiyuan, et al. Safety monitoring and stability analysis of large-scale and complicated high rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1819-1827. (in Chinese) doi:  10.3321/j.issn:1000-6915.2009.09.012

    ZHANG Jinlong, XU Weiya, JIN Haiyuan, et al. Safety monitoring and stability analysis of large-scale and complicated high rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1819-1827. (in Chinese) doi:  10.3321/j.issn:1000-6915.2009.09.012
    [9] 辛长虹, 赵引. 考虑非饱和渗流的谷幅变形对高拱坝影响分析[J]. 水利水运工程学报,2021(4):36-45. (XIN Changhong, ZHAO Yin. Analysis of the influence of valley width deformation on high arch dam considering unsaturated seepage[J]. Hydro-Science and Engineering, 2021(4): 36-45. (in Chinese) doi:  10.12170/20210114003

    XIN Changhong, ZHAO Yin. Analysis of the influence of valley width deformation on high arch dam considering unsaturated seepage[J]. Hydro-Science and Engineering, 2021(4): 36-45. (in Chinese) doi:  10.12170/20210114003
    [10] 胡江. 特高拱坝运行初期变形监测预报模型及构建方法[J]. 水利水运工程学报,2020(5):63-71. (HU Jiang. Deformation forecasting model and its modeling method of super high arch dams during initial operation periods[J]. Hydro-Science and Engineering, 2020(5): 63-71. (in Chinese) doi:  10.12170/20190908001

    HU Jiang. Deformation forecasting model and its modeling method of super high arch dams during initial operation periods[J]. Hydro-Science and Engineering, 2020(5): 63-71. (in Chinese) doi:  10.12170/20190908001
    [11] 王俊杰, 朱俊高, 王克东, 等. 水库蓄水对库底沉降影响的数值分析[J]. 岩土力学,2005,26(10):1591-1596. (WANG Junjie, ZHU Jungao, WANG Kedong, et al. Numerical analysis of influence of filling on settlement of reservoir foundation[J]. Rock and Soil Mechanics, 2005, 26(10): 1591-1596. (in Chinese) doi:  10.3969/j.issn.1000-7598.2005.10.013

    WANG Junjie, ZHU Jungao, WANG Kedong, et al. Numerical analysis of influence of filling on settlement of reservoir foundation[J]. Rock and Soil Mechanics, 2005, 26(10): 1591-1596. (in Chinese) doi:  10.3969/j.issn.1000-7598.2005.10.013
    [12] 赵振军, 于胜利. 白鹤滩水电站施工期谷幅变形监测分析[J]. 岩土工程技术,2020,34(2):102-105. (ZHAO Zhenjun. YU Shengli. Monitoring and analysis of valley deformation during construction of Baihetan Hydropower Station[J]. Geotechnical Engineering Technique, 2020, 34(2): 102-105. (in Chinese) doi:  10.3969/j.issn.1007-2993.2020.02.008

    ZHAO Zhenjun. YU Shengli. Monitoring and analysis of valley deformation during construction of Baihetan Hydropower Station[J]. Geotechnical Engineering Technique, 2020, 34(2): 102-105. (in Chinese) doi:  10.3969/j.issn.1007-2993.2020.02.008
    [13] LUO D N, LIN P, LI Q B, et al. Effect of the impounding process on the overall stability of a high arch dam: a case study of the Xiluodu dam, China[J]. Arabian Journal of Geosciences, 2015, 8(11): 9023-9041. doi:  10.1007/s12517-015-1868-6
    [14] LIN P, LIU X L, HU S Y, et al. Large deformation analysis of a high steep slope relating to the Laxiwa Reservoir, China[J]. Rock Mechanics and Rock Engineering, 2016, 49(6): 2253-2276. doi:  10.1007/s00603-016-0925-0
    [15] 张冲, 尹华安. 溪洛渡特高拱坝初期蓄水期监测反馈分析[J]. 水电站设计,2014,30(2):7-12, 25. (ZHANG Chong, YIN Huaan. Monitoring and back analysis of Xiluodu high arch dam during initial impoundment[J]. Design of Hydroelectric Power Station, 2014, 30(2): 7-12, 25. (in Chinese) doi:  10.3969/j.issn.1003-9805.2014.02.002

    ZHANG Chong, YIN Huaan. Monitoring and back analysis of Xiluodu high arch dam during initial impoundment[J]. Design of Hydroelectric Power Station, 2014, 30(2): 7-12, 25. (in Chinese) doi:  10.3969/j.issn.1003-9805.2014.02.002
    [16] CHENG L, LIU Y R, YANG Q, et al. Mechanism and numerical simulation of reservoir slope deformation during impounding of high arch dams based on nonlinear FEM[J]. Computers and Geotechnics, 2017, 81: 143-154. doi:  10.1016/j.compgeo.2016.08.009
    [17] 徐岗, 裴向军, 刘明, 等. 锦屏一级水电站库区谷幅时变特征及因素[J]. 南水北调与水利科技(中英文),2020,18(4):159-166, 177. (XU Gang, PEI Xiangjun, LIU Ming, et al. Time-varying characteristics and factors analysis of the valley area of Jinping I Hydropower Station[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(4): 159-166, 177. (in Chinese)

    XU Gang, PEI Xiangjun, LIU Ming, et al. Time-varying characteristics and factors analysis of the valley area of Jinping I Hydropower Station[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(4): 159-166, 177. (in Chinese)
  • [1] 赵二峰, 顾冲时.  特高拱坝结构性态诊断与监控方法述评 . 水利水运工程学报, 2023, (1): 0-10. doi: 10.12170/20211203005
    [2] 丁玉堂, 周王俊, 陈章仑, 陈洪丰, 王超逸, 陆阳洋.  面板堆石坝长效服役状态下微幅变形监测及其分析 . 水利水运工程学报, 2022, (3): 74-81. doi: 10.12170/20210523001
    [3] 范明杰, 李卓.  基于北斗卫星导航系统的大坝静动力变形监测 . 水利水运工程学报, 2022, (3): 34-40. doi: 10.12170/20220115001
    [4] 何斌, 何宁, 张中流, 汪璋淳, 胡德新, 智月荣.  基于传感光纤技术的堤坝分布式变形监测 . 水利水运工程学报, 2021, (5): 137-143. doi: 10.12170/20200828001
    [5] 辛长虹, 赵引.  考虑非饱和渗流的谷幅变形对高拱坝影响分析 . 水利水运工程学报, 2021, (4): 36-45. doi: 10.12170/20210114003
    [6] 王子成, 许后磊, 赵志勇, 张礼兵, 陈豪, 陈亚军, 徐智勇.  特高拱坝动态安全风险分析系统研发及应用 . 水利水运工程学报, 2020, (1): 112-118. doi: 10.12170/20181201002
    [7] 胡江.  特高拱坝运行初期变形监测预报模型及构建方法 . 水利水运工程学报, 2020, (5): 63-71. doi: 10.12170/20190908001
    [8] 陈旭东, 李俊杰, 霍中艳.  高桩码头裂缝开合度监测模型研究 . 水利水运工程学报, 2017, (6): 53-59. doi: 10.16198/j.cnki.1009-640X.2017.06.008
    [9] 戴波, 何启.  大坝变形监测统计模型与混沌优化ELM组合模型 . 水利水运工程学报, 2016, (6): 9-15.
    [10] 何宁, 钱亚俊, 何斌, 王国利, 汪璋淳, 李登华.  高精度GPS实时变形监测系统应用研究 . 水利水运工程学报, 2013, (1): 54-59.
    [11] 陈兴周, 柴军瑞, 白俊光.  某水电站引水隧洞出口高边坡变形机理研究 . 水利水运工程学报, 2013, (2): 33-38.
    [12] 章为民,王年香,顾行文,曾友金,伍小玉,杜三林.  土石坝坝顶加固的永久变形机理及其离心模型试验验证 . 水利水运工程学报, 2011, (1): -.
    [13] 张幸农,陈长英,假冬冬,应强,张思和.  流滑型窝崩特征及概化模拟试验 . 水利水运工程学报, 2011, (4): -.
    [14] 朱异云,刘佑荣.  GPS技术在高切坡安全监测中的应用 . 水利水运工程学报, 2009, (3): -.
    [15] 谷艳昌,何鲜峰,郑东健.  基于蒙特卡罗方法的高拱坝变形监控指标拟定 . 水利水运工程学报, 2008, (1): 14-19.
    [16] 陈爱玖,章青,刘仲秋.  高拱坝抗震理论分析进展 . 水利水运工程学报, 2006, (4): 67-73.
    [17] 周伟才,陶桂兰.  考虑节点域和剪切变形影响的高桩码头横向排架的内力计算 . 水利水运工程学报, 2005, (1): 56-59.
    [18] 崔玉柱,周元德,张楚汉,金峰.  坝肩岩体地震残余变形对小湾拱坝安全影响 . 水利水运工程学报, 2001, (3): 13-17.
    [19] 邹广电.  地基弹性模量、拱圈形式对拱坝坝肩稳定、应力、变形影响的研究 . 水利水运工程学报, 1987, (2): -.
    [20] 赵志仁.  水工混凝土自由体积变形的推算 . 水利水运工程学报, 1981, (4): -.
  • 加载中
图(9) / 表 (2)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  58
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2022-07-03

/

返回文章
返回