留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限元法的船舶抛锚贯入深度探讨

余博闻 陈立 刘睿

余博闻,陈立,刘睿. 基于有限元法的船舶抛锚贯入深度探讨[J]. 水利水运工程学报,2022(3):100-107. doi:  10.12170/20210430001
引用本文: 余博闻,陈立,刘睿. 基于有限元法的船舶抛锚贯入深度探讨[J]. 水利水运工程学报,2022(3):100-107. doi:  10.12170/20210430001
(YU Bowen, CHEN Li, LIU Rui. Discussion of penetration depth of ship anchoring based on finite element method[J]. Hydro-Science and Engineering, 2022(3): 100-107. (in Chinese)) doi:  10.12170/20210430001
Citation: (YU Bowen, CHEN Li, LIU Rui. Discussion of penetration depth of ship anchoring based on finite element method[J]. Hydro-Science and Engineering, 2022(3): 100-107. (in Chinese)) doi:  10.12170/20210430001

基于有限元法的船舶抛锚贯入深度探讨

doi: 10.12170/20210430001
详细信息
    作者简介:

    余博闻(1996—),男,河南邓县人, 硕士研究生,主要从事河流动力学及航道工程方面的研究。E-mail:2019202060037@whu.edu.cn

  • 中图分类号: U64

Discussion of penetration depth of ship anchoring based on finite element method

  • 摘要: 船舶抛锚贯入深度的准确计算,对穿越锚地与航道河床以下管线工程的安全性至关重要。依据投锚试验结果,对比分析了现有的计算抛锚贯入深度的经验法、标准法、理论公式法的计算精度。以霍尔锚为例,基于有限元软件,提出了一种能够考虑复杂土层、触底水平速度及触底姿态等多因素的抛锚贯入深度数值模拟方法,并通过几何形态分析,研究了拖锚对贯入深度的影响。计算结果表明,触底水平速度、触底夹角和拖锚均影响贯入深度,其中拖锚的影响程度最大,触底夹角次之,触底水平速度的影响程度最小。考虑触底水平速度、触底夹角及拖锚影响的贯入深度更有利于保障工程安全。
  • 图  1  投锚试验结果[13]

    Figure  1.  Results of ship anchoring experiment[13]

    图  2  锚-河床有限元模型

    Figure  2.  Anchor-riverbed finite element model

    图  3  霍尔锚概化模型

    Figure  3.  Model of generalized Hall anchor

    图  4  拖锚时锚的形态分析[15]

    Figure  4.  Anchor geometric analysis when dragging[15]

    图  5  触底水平速度对贯入深度的影响

    Figure  5.  Relation diagram of the impact of bottoming horizontal velocity on penetration depth

    图  6  触底夹角对贯入深度的影响

    Figure  6.  Relation diagram of the impact of bottoming angle on penetration depth

    表  1  各方法计算得到的贯入深度对比

    Table  1.   Comparison of penetration depths calculated by various methods

    锚质量/t土质贯入深度/m
    经验法GB 50217—2018标准法DNV理论公式法投锚试验
    4.89 砂土 1.50 2.63 1.17~1.92 0.25~1.13
    淤泥土 4.50 2.63 1.92~2.59 1.13~4.34
    8.30 砂土 1.79 3.27 1.39~2.28 0.30~1.41
    淤泥土 5.37 3.27 2.28~3.07 1.41~4.72
    12.30 砂土 2.04 3.77 1.58~2.60 0.34~1.61
    淤泥土 6.12 3.77 2.60~3.50 1.61~5.00
    18.80 砂土 2.35 4.34 1.82~2.99 0.38~1.83
    淤泥土 7.05 4.34 2.99~4.03 1.83~5.30
    23.00 砂土 2.51 4.61 1.95~3.20 0.40~1.93
    淤泥土 7.53 4.61 3.20~4.31 1.93~5.45
      注:计算时,DNV理论公式中,$ {N_\gamma } $取值范围参照文献[14],附加质量系数取1~2。投锚试验结果由图1中拟合得到的上、下边界及分界线方程计算。
    下载: 导出CSV

    表  2  土层物理力学参数

    Table  2.   Physical and mechanical parameters of soil layer

    地层号天然密度/(kg·m−3)含水率/
    %
    黏聚力/kPa摩擦角/
    °
    体积模量/
    MPa
    剪切模量/
    MPa
    土层高程范围/
    m
    1淤泥质1 78038.9013.018.385.121.09−20.46~ −26.35
    1-1粉砂1 95025.208.0036.002.991.79−26.35~ −33.33
    6-1粉土1 79033.6015.0924.874.101.89−33.33~ −38.69
    6粉质黏土1 79033.8017.349.854.631.54−38.69~ −47.31
    7粉砂1 93025.204.0028.004.672.15−47.31~ −70.46
    下载: 导出CSV

    表  3  计算工况

    Table  3.   Calculation scenarios

    模型
    编号
    锚质量/t触底垂直速度/
    (m·s−1)
    触底水平速度/
    (m·s−1)
    触底夹角/°模型
    编号
    锚质量/t触底垂直速度/
    (m·s−1)
    触底水平速度/
    (m·s−1)
    触底夹角/°
    1 4.89 6.44 0 90 8 29.00 8.57 2.00 90
    2 8.30 6.96 0 90 9 29.00 8.57 3.50 90
    3 12.30 7.43 0 90 10 29.00 8.57 5.00 90
    4 18.80 7.97 0 90 11 29.00 8.57 3.50 75
    5 23.00 8.25 0 90 12 29.00 8.57 3.50 60
    6 29.00 8.57 0 90 13 29.00 8.57 3.50 45
    7 29.00 8.57 1.00 90 14 29.00 8.57 3.50 30
    下载: 导出CSV

    表  4  不同质量锚的啮土深度

    Table  4.   Depth of engagement in soil of anchors with different weights

    锚质量/t对应工况锚爪长度/m锚冠厚度/mH1/mH2/m比无拖锚时的增幅/%
    4.89 1 1.50 0.33 1.00 1.50 170.5
    8.30 2 1.79 0.39 1.20 1.78 172.8
    12.30 3 2.04 0.45 1.37 2.04 167.2
    18.80 4 2.35 0.52 1.57 2.35 169.1
    23.00 5 2.51 0.55 1.68 2.50 147.9
    29.00 6 2.72 0.60 1.82 2.72 136.7
      注:H1为锚爪没入土时的啮土深度;H2为锚冠没入土体时的啮土深度。
    下载: 导出CSV
  • [1] 刘晓平, 李明, 方松森, 等. 桥区河段横流对船舶航行的影响[J]. 水利水运工程学报,2012(2):21-26. (LIU Xiaoping, LI Ming, FANG Songsen, et al. Influence of cross current on ship in bridge navigable waters[J]. Hydro-Science and Engineering, 2012(2): 21-26. (in Chinese) doi:  10.3969/j.issn.1009-640X.2012.02.004

    LIU Xiaoping, LI Ming, FANG Songsen, et al. Influence of cross current on ship in bridge navigable waters[J]. Hydro-Science and Engineering, 2012(2): 21-26. (in Chinese)) doi:  10.3969/j.issn.1009-640X.2012.02.004
    [2] 张磊. 基于船舶应急抛锚的海底管道埋深及保护研究[D]. 武汉: 武汉理工大学, 2013.

    ZHANG Lei. The research of the burial depth and protection of the submarine pipelines based on the ship’s emergency anchoring[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese)
    [3] 黄启峰, 郭海燕, 李伟, 等. 海底管道受坠物锚击损伤试验与数值模拟研究[J]. 海洋工程,2018,36(3):84-88. (HUANG Qifeng, GUO Haiyan, LI Wei, et al. Numerical simulation and experimental study on the damage of submarine pipeline impacted by dropped objects[J]. The Ocean Engineering, 2018, 36(3): 84-88. (in Chinese)

    HUANG Qifeng, GUO Haiyan, LI Wei, et al. Numerical simulation and experimental study on the damage of submarine pipeline impacted by dropped objects[J]. The Ocean Engineering, 2018, 36(3): 84-88. (in Chinese))
    [4] 杜太利, 宣凯, 黄连忠, 等. 船舶锚泊作业对海底管线的拖拽损害[J]. 大连海事大学学报,2013,39(3):22-24, 36. (DU Taili, XUAN Kai, HUANG Lianzhong, et al. Dragging damage of anchoring operation upon the subsea pipelines[J]. Journal of Dalian Maritime University, 2013, 39(3): 22-24, 36. (in Chinese) doi:  10.3969/j.issn.1006-7736.2013.03.006

    DU Taili, XUAN Kai, HUANG Lianzhong, et al. Dragging damage of anchoring operation upon the subsea pipelines[J]. Journal of Dalian Maritime University, 2013, 39(3): 22-24, 36. (in Chinese)) doi:  10.3969/j.issn.1006-7736.2013.03.006
    [5] 庄元, 宋少桥. 海底管线埋深问题研究[J]. 大连海事大学学报,2013,39(1):61-64. (ZHUANG Yuan, SONG Shaoqiao. Study on the depth of submerged pipeline[J]. Journal of Dalian Maritime University, 2013, 39(1): 61-64. (in Chinese) doi:  10.3969/j.issn.1006-7736.2013.01.016

    ZHUANG Yuan, SONG Shaoqiao. Study on the depth of submerged pipeline[J]. Journal of Dalian Maritime University, 2013, 39(1): 61-64. (in Chinese)) doi:  10.3969/j.issn.1006-7736.2013.01.016
    [6] ZHU X Y, HAO Q L, ZHANG J. Buried depth of a submarine pipeline based on anchor penetration[J]. Journal of Marine Science and Engineering, 2019, 7(8): 257. doi:  10.3390/jmse7080257
    [7] 刘润, 汪嘉钰, 别社安. 船舶抛锚过程中落锚贯入深度研究[J]. 天津大学学报(自然科学与工程技术版),2020,53(5):508-516. (LIU Run, WANG Jiayu, BIE She’an. Study of the penetration depth of an anchor in the dropping anchor process[J]. Journal of Tianjin University (Science and Technology), 2020, 53(5): 508-516. (in Chinese)

    LIU Run, WANG Jiayu, BIE She’an. Study of the penetration depth of an anchor in the dropping anchor process[J]. Journal of Tianjin University (Science and Technology), 2020, 53(5): 508-516. (in Chinese))
    [8] 王洪波. 霍尔锚与斯贝克锚抛锚深度模型试验研究[D]. 大连: 大连理工大学, 2019.

    WANG Hongbo. Model tests study on penetration depths of Hall anchor and Speke anchor[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [9] GAO P, DUAN M L, GAO Q, et al. A prediction method for anchor penetration depth in clays[J]. Ships and Offshore Structures, 2016, 11(7): 782-789. doi:  10.1080/17445302.2015.1116244
    [10] 张磊, 王振宁, 甘浪雄, 等. 基于有限元法的海底管道埋深计算[J]. 船舶工程,2017,39(11):93-98. (ZHANG Lei, WANG Zhenning, GAN Langxiong, et al. Buried depth calculation of subsea pipeline based on finite element method[J]. Ship Engineering, 2017, 39(11): 93-98. (in Chinese)

    ZHANG Lei, WANG Zhenning, GAN Langxiong, et al. Buried depth calculation of subsea pipeline based on finite element method[J]. Ship Engineering, 2017, 39(11): 93-98. (in Chinese))
    [11] 李靓亮, 李文全. 《内河通航标准》中水下隧道与锚地安全间距的探讨[J]. 水运工程,2018(12):99-103, 109. (LI Liangliang, LI Wenquan. Safety distance between underwater tunnel and anchorage in Navigation Standard of Inland Waterway[J]. Port & Waterway Engineering, 2018(12): 99-103, 109. (in Chinese) doi:  10.3969/j.issn.1002-4972.2018.12.020

    LI Liangliang, LI Wenquan. Safety distance between underwater tunnel and anchorage in Navigation Standard of Inland Waterway[J]. Port & Waterway Engineering, 2018(12): 99-103, 109. (in Chinese)) doi:  10.3969/j.issn.1002-4972.2018.12.020
    [12] Det Norske Verttas. Recommended practice DNV-RP-F107 risk assessment of pipeline protection[S]. Høvik: Det Norske Verttas, 2010.
    [13] NAKAYAMA S, KIYOMIYA O. Depth penetration of anchors into seabotton through anchoring tests[R]. Yokosuka, Japan: The Port and Harbour Research Institute Ministry of Transport, 1975.
    [14] 冯士伦, 朱晓宇, 李焱, 等. 抛锚贯入深度计算方法比较研究[J]. 海洋技术学报,2020,39(2):91-97. (FENG Shilun, ZHU Xiaoyu, LI Yan, et al. Comparative study on the calculation methods of anchor penetration depth[J]. Journal of Ocean Technology, 2020, 39(2): 91-97. (in Chinese)

    FENG Shilun, ZHU Xiaoyu, LI Yan, et al. Comparative study on the calculation methods of anchor penetration depth[J]. Journal of Ocean Technology, 2020, 39(2): 91-97. (in Chinese))
    [15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 霍尔锚: GB/T 546—2016[S]. 北京: 中国标准出版社, 2016.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. Hall anchor: GB/T 546—2016[S]. Beijing: China Standard Press, 2016. (in Chinese)
    [16] 徐伟, 汪嘉钰, 郑志源, 等. 船舶拖锚对海底电缆埋深的影响[J]. 船海工程,2018,47(1):147-150, 154. (XU Wei, WANG Jiayu, ZHENG Zhiyuan, et al. Influence of dragging anchor upon the buried depth of submarine cable[J]. Ship & Ocean Engineering, 2018, 47(1): 147-150, 154. (in Chinese) doi:  10.3963/j.issn.1671-7953.2018.01.033

    XU Wei, WANG Jiayu, ZHENG Zhiyuan, et al. Influence of dragging anchor upon the buried depth of submarine cable[J]. Ship & Ocean Engineering, 2018, 47(1): 147-150, 154. (in Chinese)) doi:  10.3963/j.issn.1671-7953.2018.01.033
    [17] 李培冬, 刘海笑, 赵燕兵. 拖曳锚在海床中运动特性的大变形有限元分析[J]. 海洋工程,2016,34(2):56-63. (LI Peidong, LIU Haixiao, ZHAO Yanbing. Large deformation finite element analysis on the kinematic behavior of drag anchors in the seabed[J]. The Ocean Engineering, 2016, 34(2): 56-63. (in Chinese)

    LI Peidong, LIU Haixiao, ZHAO Yanbing. Large deformation finite element analysis on the kinematic behavior of drag anchors in the seabed[J]. The Ocean Engineering, 2016, 34(2): 56-63. (in Chinese))
    [18] 宋海娟, 刘海笑, 赵燕兵. 深水锚在海床中复杂动力行为的分析模型[J]. 海洋工程,2015,33(6):35-44. (SONG Haijuan, LIU Haixiao, ZHAO Yanbing. An analytical model of comprehensive kinematic behaviors of deepwater anchors in the seabed[J]. The Ocean Engineering, 2015, 33(6): 35-44. (in Chinese)

    SONG Haijuan, LIU Haixiao, ZHAO Yanbing. An analytical model of comprehensive kinematic behaviors of deepwater anchors in the seabed[J]. The Ocean Engineering, 2015, 33(6): 35-44. (in Chinese))
  • [1] 徐世媚, 黄耀英, 徐小枫, 殷晓慧, 郝丹, 陈飞.  基于速度与加速度准则的泄水闸裂缝工作性态诊断 . 水利水运工程学报, 2022, (5): 78-85. doi: 10.12170/20210816001
    [2] 孟翔, 高路恒, 吴浩, Atangana NjockPierre Guy.  基于SPH无网格法的纺锤形桩靴连续贯入过程模拟 . 水利水运工程学报, 2020, (4): 111-118. doi: 10.12170/20190215002
    [3] 郭东, 王建华, 范怡飞.  桩靴贯入砂土层时邻近桩挤土压力分析 . 水利水运工程学报, 2019, (5): 91-100. doi: 10.16198/j.cnki.1009-640X.2019.05.012
    [4] 陈里, 杨渠锋, 喻涛, 王平义.  滑坡涌浪作用下系泊船舶安全试验研究 . 水利水运工程学报, 2017, (1): 80-86. doi: 10.16198/j.cnki.1009-640X.2017.01.011
    [5] 白志刚, 臧颖, 杨武.  考虑船舶停靠的码头减淤措施研究 . 水利水运工程学报, 2016, (5): 61-69.
    [6] 黄岳, 宣国祥, 徐进超, 张陆陈, 金英.  船舶进出闸室对系缆力的影响 . 水利水运工程学报, 2015, (2): 50-54.
    [7] 徐武雄, 初秀民, 刘兴龙.  船舶交通流建模与仿真研究进展 . 水利水运工程学报, 2014, (6): 91-99.
    [8] 路 鼎, 王平义, 喻 涛, 陈 里, 何 庆.  滑坡涌浪影响下船舶航行限制范围试验研究 . 水利水运工程学报, 2014, (4): 70-74.
    [9] 吴俊;丁甡奇;余葵;李晓飚;闻光华.  内河离港船舶吃水在线动态扫描检测方法 . 水利水运工程学报, 2013, (5): 83-88.
    [10] 刘晓平,李明,方松森,林积大.  桥区河段横流对船舶航行的影响 . 水利水运工程学报, 2012, (2): 21-26.
    [11] 陈武,董元宏,李双洋,徐湘田.  季节性冻土区引水暗渠的临界埋深数值分析 . 水利水运工程学报, 2011, (3): -.
    [12] 童思陈,许光祥,邓明文.  内河船舶航行阻力及通航水力指标计算 . 水利水运工程学报, 2010, (2): -.
    [13] 刘俊生,卞华.  湖区避风港船舶避风需求预测 . 水利水运工程学报, 2009, (2): -.
    [14] 曹民雄,姜继红,唐存本,蔡国正.  船舶上滩阻力计算方法对比与分析 . 水利水运工程学报, 2005, (2): 41-45.
    [15] 宣国祥,张瑞凯,杨朝东,黄岳,宗慕伟.  船舶航行条件实时模拟器的研制 . 水利水运工程学报, 1999, (3): -.
    [16] 朱雅仙,武世翔,洪定海,朱秀娟.  砼构件中钢筋腐蚀速度的检测 . 水利水运工程学报, 1996, (2): -.
    [17] 刘沛清,冬俊瑞.  自由面流的速度分布理论分析 . 水利水运工程学报, 1993, (3): -.
    [18] 张诚厚,G. Greeuw W. F. Rosenbr,J. W. A. Jekel.  一种用孔压圆锥贯入试验测定软土的新分类图 . 水利水运工程学报, 1990, (4): -.
    [19] 易进栋.  用速度法确定固结系数 . 水利水运工程学报, 1986, (2): -.
    [20] 陈绪禄,彭世明.  应变式三向加速度仪 . 水利水运工程学报, 1982, (3): -.
  • 加载中
图(6) / 表 (4)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  177
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 网络出版日期:  2022-06-10
  • 刊出日期:  2022-07-03

/

返回文章
返回