留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深埋锦屏大理岩力学特性与能量演化研究

楼晨笛 张朝鹏 吴世勇 周济芳 彭媛 艾婷 刘洋 张茹 任利

楼晨笛,张朝鹏,吴世勇,等. 深埋锦屏大理岩力学特性与能量演化研究[J]. 水利水运工程学报,2022(4):87-96. doi:  10.12170/20210524002
引用本文: 楼晨笛,张朝鹏,吴世勇,等. 深埋锦屏大理岩力学特性与能量演化研究[J]. 水利水运工程学报,2022(4):87-96. doi:  10.12170/20210524002
(LOU Chendi, ZHANG Zhaopeng, WU Shiyong, et al. Study on mechanical properties and energy evolution of Jinping deep buried marble[J]. Hydro-Science and Engineering, 2022(4): 87-96. (in Chinese)) doi:  10.12170/20210524002
Citation: (LOU Chendi, ZHANG Zhaopeng, WU Shiyong, et al. Study on mechanical properties and energy evolution of Jinping deep buried marble[J]. Hydro-Science and Engineering, 2022(4): 87-96. (in Chinese)) doi:  10.12170/20210524002

深埋锦屏大理岩力学特性与能量演化研究

doi: 10.12170/20210524002
基金项目: 国家自然科学基金资助项目(U1965203)
详细信息
    作者简介:

    楼晨笛(1998—),男,浙江东阳人,硕士研究生,主要从事岩土工程相关研究。E-mail:louchendi@stu.scu.edu.cn

    通讯作者:

    张朝鹏(E-mail:zhangzp@scu.edu.cn

  • 中图分类号: TU45

Study on mechanical properties and energy evolution of Jinping deep buried marble

  • 摘要: 与浅层岩体相比,深层岩体赋存环境更为复杂,导致其力学特性与常见的浅部岩体存在较大差异。锦屏二级隧洞工程最大埋深超过2 500 m,其引水隧洞最高地应力达70 MPa,开展高应力条件下硬岩的力学特性研究,具有重要的理论价值和现实意义。采用四川大学MTS815岩石力学试验系统对取自2 400 m深的锦屏大理岩开展单轴和三轴压缩等系列静态力学试验。试验结果表明:锦屏大理岩的单轴抗压强度为180.43 MPa,随围压的增长,大理岩表现出“脆-延-塑”力学特征,围压32.0 MPa为分界点;同时,起裂应力、损伤应力和峰值应力均具有相似的增长趋势,所定义的脆性指标的下降趋势逐渐趋于平缓;低围压下,弹性能在峰前占主导,而高围压下,耗散能增长更为显著,弹性能峰前峰后差值减小,表现出更为明显的塑性特征。研究结果为准确描述深层岩石力学行为、确保深部工程稳定性提供了一定的理论基础。
  • 图  1  静态力学试验示意图

    Figure  1.  Schematic diagram of static mechanical test

    图  2  锦屏大理岩不同深度条件下的应力应变曲线

    Figure  2.  Stress-strain curve of Jinping marble at different depths

    图  3  锦屏大理岩特征力学参数与围压的关系

    Figure  3.  Relationship between characteristic mechanical parameters and confining pressure of Jinping marble

    图  4  锦屏二级水电站不同位置埋深大理岩峰值应力与围压关系[19-21]

    Figure  4.  Relationship between peak stress and confining pressure of marble at different depths[19-21]

    图  5  锦屏大理岩单轴压缩破坏形态

    Figure  5.  Failure mode of marble under uniaxial compression        

    图  6  锦屏大理岩三轴压缩破坏形态

    Figure  6.  Failure mode of marble under conventional triaxial compression

    图  7  起裂应力和裂纹损伤应力的确定(以10-64-1试件为例)

    Figure  7.  Determination of crack initiation stress and crack damage stress (taking 10-64-1 as an example)

    图  8  特征应力-围压关系曲线

    Figure  8.  Characteristic stress-confining pressure curve

    图  9  起裂及损伤应力水平-围压关系曲线

    Figure  9.  Crack initiation and damage stress level-confining pressure curve

    图  10  应力-塑性变形量曲线

    Figure  10.  Stress-plastic deformation curve

    图  11  脆性指标-围压关系曲线

    Figure  11.  Relationship curve between brittleness index and confining pressure

    图  12  围压-能量特征值关系曲线

    Figure  12.  Relationship curve between confining pressure and energy eigenvalue

    图  13  峰值应力处能量特征值变化关系

    Figure  13.  Changes of energy eigenvalues at peak stress

  • [1] 周宏伟, 谢和平, 左建平. 深部高地应力下岩石力学行为研究进展[J]. 力学进展,2005,35(1):91-99 doi:  10.6052/1000-0992-2005-1-J2004-018

    ZHOU Hongwei, XIE Heping, ZUO Jianping. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths[J]. Advances in Mechanics, 2005, 35(1): 91-99. (in Chinese) doi:  10.6052/1000-0992-2005-1-J2004-018
    [2] 周维垣. 高等岩石力学[M]. 北京: 水利电力出版社, 1990.

    ZHOU Weiheng. Advanced rock mechanics[M]. Beijing: Water Resources and Electric Power Press, 1990. (in Chinese)
    [3] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803-2813 doi:  10.3321/j.issn:1000-6915.2005.16.001

    HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. (in Chinese) doi:  10.3321/j.issn:1000-6915.2005.16.001
    [4] LAU J S O, CHANDLER N A. Innovative laboratory testing[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1427-1445. doi:  10.1016/j.ijrmms.2004.09.008
    [5] WAGNER H. Support requirements for rockburst conditions[C]∥GAY N C, WAINWRIGHT E H. Proceedings of 1st International Congress on Rockbursts and Seismicity in Mines. Johannesburg: SAIMM, 1984: 209-218.
    [6] 李俊如, 李海波. 不同埋深岩石力学特性的实验研究[J]. 岩石力学与工程学报,2001,20(增刊1):948-951

    LI Junru, LI Haibo. Experimental study on mechanical properties of rock at different depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(Suppl1): 948-951. (in Chinese)
    [7] 李鹏波, 王金安. 煤层上覆岩层力学性质随赋存深度变化试验[J]. 哈尔滨工业大学学报,2015,47(12):98-101 doi:  10.11918/j.issn.0367-6234.2015.12.017

    LI Pengbo, WANG Jin’an. Experimental on mechanical properties of overlying strata rock changed with the occurrence depth[J]. Journal of Harbin Institute of Technology, 2015, 47(12): 98-101. (in Chinese) doi:  10.11918/j.issn.0367-6234.2015.12.017
    [8] WAWERSIK W R, FAIRHURST C. A study of brittle rock fracture in laboratory compression experiments[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1970, 7(5): 561-575.
    [9] 彭俊, 蔡明, 荣冠, 等. 裂纹闭合应力及其岩石微裂纹损伤评价[J]. 岩石力学与工程学报,2015,34(6):1091-1100

    PENG Jun, CAI Ming, RONG Guan, et al. Stresses for crack closure and its application to assessing stress-induced microcrack damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1091-1100. (in Chinese)
    [10] 周辉, 孟凡震, 卢景景, 等. 硬岩裂纹起裂强度和损伤强度取值方法探讨[J]. 岩土力学,2014,35(4):913-918, 925

    ZHOU Hui, MENG Fanzhen, LU Jingjing, et al. Discussion on methods for calculating crack initiation strength and crack damage strength for hard rock[J]. Rock and Soil Mechanics, 2014, 35(4): 913-918, 925. (in Chinese)
    [11] 李存宝, 谢和平, 谢凌志. 页岩起裂应力和裂纹损伤应力的试验及理论[J]. 煤炭学报,2017,42(4):969-976

    LI Cunbao, XIE Heping, XIE Lingzhi. Experimental and theoretical study on the shale crack initiation stress and crack damage stress[J]. Journal of China Coal Society, 2017, 42(4): 969-976. (in Chinese)
    [12] ZHANG Z P, XIE H P, ZHANG R, et al. Deformation damage and energy evolution characteristics of coal at different depths[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1491-1503. doi:  10.1007/s00603-018-1555-5
    [13] JIA Z Q, XIE H P, ZHANG R, et al. Acoustic emission characteristics and damage evolution of coal at different depths under triaxial compression[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2063-2076. doi:  10.1007/s00603-019-02042-w
    [14] JIA Z Q, LI C B, ZHANG R, et al. Energy evolution of coal at different depths under unloading conditions[J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4637-4649. doi:  10.1007/s00603-019-01856-y
    [15] 刘宁, 张春生, 褚卫江, 等. 深埋大理岩力学特性对岩爆发生条件的影响分析[J]. 岩土力学,2013,34(9):2638-2642, 2648

    LIU Ning, ZHANG Chunsheng, CHU Weijiang, et al. Influence of mechanical characteristics of deep-buried marble on rockburst occurrence conditions[J]. Rock and Soil Mechanics, 2013, 34(9): 2638-2642, 2648. (in Chinese)
    [16] 中华人共和国水利部. 水利水电工程岩石试验规程: SL 264—2001[S]. 北京: 中国水利水电出版社, 2001.

    Ministry of Water Resources of the People’s Republic of China. Specifications for rock tests in water conservancy and hydroelectric engineering: SL 264—2001[S]. Beijing: China Water & Power Press, 2001. (in Chinese)
    [17] 葛修润, 侯明勋. 钻孔局部壁面应力解除法(BWSRM)的原理及其在锦屏二级水电站工程中的初步应用[J]. 中国科学:技术科学,2012,55(4):939-949 doi:  10.1007/s11431-011-4680-x

    GE Xiurun, HOU Mingxun. Principle of in-situ 3D rock stress measurement with borehole wall stress relief method and its preliminary applications to determination of in-situ rock stress orientation and magnitude in Jinping hydropower station[J]. Science China Technological Sciences, 2012, 55(4): 939-949. (in Chinese) doi:  10.1007/s11431-011-4680-x
    [18] 张传庆, 张玲, 周辉, 等. 深部硬岩的力学特性与支护要求[J]. 武汉工程大学学报,2018,40(5):543-549 doi:  10.3969/j.issn.1674-2869.2018.05.013

    ZHANG Chuanqing, ZHANG Ling, ZHOU Hui, et al. Mechanical properties and support requirements of hard rock in deep engineering[J]. Journal of Wuhan Institute of Technology, 2018, 40(5): 543-549. (in Chinese) doi:  10.3969/j.issn.1674-2869.2018.05.013
    [19] 张春生, 陈祥荣, 侯靖, 等. 锦屏二级水电站深埋大理岩力学特性研究[J]. 岩石力学与工程学报,2010,29(10):1999-2009

    ZHANG Chunsheng, CHEN Xiangrong, HOU Jing, et al. Study of mechanical behavior of deep-buried marble at Jinping Ⅱ hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1999-2009. (in Chinese)
    [20] 李宏哲, 夏才初, 闫子舰, 等. 锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J]. 岩石力学与工程学报,2007,26(10):2104-2109 doi:  10.3321/j.issn:1000-6915.2007.10.021

    LI Hongzhe, XIA Caichu, YAN Zijian, et al. Study on marble unloading mechanical properties of Jinping hydropower station under high Geostress conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10): 2104-2109. (in Chinese) doi:  10.3321/j.issn:1000-6915.2007.10.021
    [21] 王建良. 深埋大理岩力学特性研究及其工程应用[D]. 昆明: 昆明理工大学, 2013.

    WANG Jianliang. Mechanical characteristics of deeply buried marble and its technical application[D]. Kunming: Kunming University of Science and Technology, 2013. (in Chinese)
    [22] 苏承东, 张振华. 大理岩三轴压缩的塑性变形与能量特征分析[J]. 岩石力学与工程学报,2008,27(2):273-280 doi:  10.3321/j.issn:1000-6915.2008.02.007

    SU Chengdong, ZHANG Zhenhua. Analysis of plastic deformation and energy property of marble under pseudo-triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 273-280. (in Chinese) doi:  10.3321/j.issn:1000-6915.2008.02.007
    [23] 王宇, 李晓, 武艳芳, 等. 脆性岩石起裂应力水平与脆性指标关系探讨[J]. 岩石力学与工程学报,2014,33(2):264-275

    WANG Yu, LI Xiao, WU Yanfang, et al. Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 264-275. (in Chinese)
    [24] HOWELL J V. Glossary of geology and related sciences[M]. Washington: American Geological Institute, 1957: 99-102.
  • [1] 魏攀哲, 赵引.  岩体劣化对谷幅变形及高拱坝安全性的影响 . 水利水运工程学报, 2023, (2): 104-112. doi: 10.12170/20221023002
    [2] 封陈晨, 王志亮, 王浩然, 王昊辰.  含裂隙大理岩压缩破坏和能量特征颗粒流模拟 . 水利水运工程学报, 2023, (1): 53-62. doi: 10.12170/20220112001
    [3] 詹懿德, 汪发祥, 佘恬钰, 沈佳轶, 吕庆.  考虑围压效应的块状节理岩体变形破坏数值模拟 . 水利水运工程学报, 2022, (4): 70-76. doi: 10.12170/20211220002
    [4] 丁英勋, 王志亮, 黄佑鹏.  含充填节理岩体中应力波传播规律的三维模拟 . 水利水运工程学报, 2020, (6): 80-88. doi: 10.12170/20190529001
    [5] 程卓群, 彭刚, 孙尚鹏, 王普, 刘苗苗.  基于Najar能量法的混凝土动态双轴受压损伤特性分析 . 水利水运工程学报, 2019, (4): 100-106. doi: 10.16198/j.cnki.1009-640X.2019.04.014
    [6] 刘得潭, 沈振中, 徐力群, 邱莉婷, 江婷.  岩体水力劈裂临界水压力影响因素及机理研究 . 水利水运工程学报, 2018, (4): 30-37. doi: 10.16198/j.cnki.1009-640X.2018.04.005
    [7] 姚吉康, 王志亮.  华山花岗岩力学特性及能量演化规律研究 . 水利水运工程学报, 2018, (3): 78-85. doi: 10.16198/j.cnki.1009-640X.2018.03.011
    [8] 于洋.  岩体隧洞岩爆过程微震特征及其扩展机制 . 水利水运工程学报, 2017, (1): 26-31. doi: 10.16198/j.cnki.1009-640X.2017.01.004
    [9] 柳琪, 彭刚, 徐童淋, 杨乃鑫.  冻融劣化混凝土循环加卸载外包络线及能量演化 . 水利水运工程学报, 2017, (6): 85-91. doi: 10.16198/j.cnki.1009-640X.2017.06.012
    [10] 罗曦, 彭刚, 刘博文, 王孝政.  用改进Najar能量法分析混凝土单轴受压损伤特性 . 水利水运工程学报, 2016, (5): 103-108.
    [11] 刘依松.  岩垱水库除险加固设计洪水分析 . 水利水运工程学报, 2013, (4): 55-59.
    [12] 方从严,卓家寿.  节理岩体数值仿真研究综述 . 水利水运工程学报, 2005, (2): 70-78.
    [13] 朱代洪,李磊.  基于小尺度量测值的岩体结构面粗糙度系数分析 . 水利水运工程学报, 2002, (1): 56-59.
    [14] 董海洲,陈建生,徐洋.  裂隙岩体渗流研究中的同位素示踪模型 . 水利水运工程学报, 2002, (3): 74-78.
    [15] 崔玉柱,周元德,张楚汉,金峰.  坝肩岩体地震残余变形对小湾拱坝安全影响 . 水利水运工程学报, 2001, (3): 13-17.
    [16] 李定方,鄢俊,陈平.  岩体裂隙传导系数研究 . 水利水运工程学报, 1999, (4): 309-316.
    [17] 王洪涛,王恩志,金宜英.  裂隙岩体渗流耦合数值分析方法及其工程应用 . 水利水运工程学报, 1998, (4): -.
    [18] 于龙,陶同康.  岩体裂隙水流的运动规律 . 水利水运工程学报, 1997, (3): -.
    [19] 李定方,鄢俊,陶同康.  裂隙岩体渗流新模型 . 水利水运工程学报, 1996, (4): -.
    [20] 李祖贻,陈平.  裂隙岩体二维渗流计算 . 水利水运工程学报, 1992, (2): -.
  • 加载中
图(13)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  108
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 网络出版日期:  2022-07-06
  • 刊出日期:  2022-08-23

/

返回文章
返回