Evaluation and calibration of Sentinel-3A SRAL Level 2 product over Poyang Lake
-
摘要: Sentinel-3A卫星合成孔径雷达高度计(SRAL)因其时空分辨率优势在水位监测上应用潜力较大。基于2016—2018年Landsat-8 与Sentinel-2 光学遥感获取鄱阳湖星子站邻近水域,提取湖上Sentinel-3A SRAL 2级产品卫星测高点,提出一种卫星测高水位计算与校准方法,并结合实测水位进行评估。结果表明:Sentinel-3A SRAL 2级产品在鄱阳湖的过境数据有效率为64%,3—9月有连续覆盖数据,12月至次年2月受水位低或湖滩出露影响无有效数据;不同高程系统下的卫星观测水位与实测水位序列的一致性极显著,皮尔逊相关系数为0.999,在0.001水平上显著相关,实测水位变化量与卫星观测水位变化量的皮尔逊相关系数为1,二者的平均偏差为−0.175 m,标准差为0.084 m,其中降轨统计指标值优于升轨,枯水期则优于丰水期,以降轨枯水期指标值为最优:平均偏差、均方根误差、标准差分别为−0.082、0.107和0.076 m。以2016—2017年、2017—2018年、2016—2018年卫星测高水位与实测数据的平均偏差作为校准参数,校准水位的平均绝对偏差都为0.073 m,皮尔逊相关系数为1。研究验证了卫星测高数据计算和校准河湖水位方法的有效性,该类数据可应用于水文、气候变化研究与洪旱监测等。
-
关键词:
- 卫星遥感 /
- Sentinel-3A /
- 水位 /
- 合成孔径雷达高度计(SRAL) /
- 校准 /
- 鄱阳湖
Abstract: The Sentinel-3 Satellite Synthetic Aperture Radar Altimeter (SRAL) data is one of the emerging data sources for monitoring water level. Based on the water body information of Poyang Lake extracted by Landsat-8 and Sentinel-2 optical remote images, the Sentinel-3A SRAL satellite measurements near Xingzi hydrological Station were extracted. According to the principle of satellite altimetry considering geophysical corrections, an outlier elimination rule and automatic calculation of each date satellite water level process were proposed, and measured water level was used to evaluate and calibrate the Sentinel-3A radar altimeter retrieved water level. Results show that the effective rate of Sentinel-3A satellite data in Poyang Lake is 64%, and valid data cover March to September. The Pearson correlation coefficient of satellite retrieved water level is greater than 0.99, and there is a significant correlation at the level of 0.001. The Pearson correlation coefficient between satellite water level change and measured water level change is 1, the average deviation is −0.175 m and STDEVA is 0.084. For ascending and descending orbits, the value of the statistics in descending orbit is better than those in ascending orbit. For high-water and low-water seasons, the values of the statistics in the low-water season are better than those in the high-water season, and the statistical index in the low-water season is the smallest: the average deviation is −0.082 m, RMSE is 0.107 m. The average absolute deviation of the calibration water level using the average deviation between the measured data and satellite altimeter water level in 2016-2017, 2016-2018, 2016-2018 as the calibration parameter both are 0.073 m, and R-value is 1. The water level calibration results based on different calibration parameters have little difference. The study has proved the effectiveness of the method of satellite altimetry data calculation and lake water level calibration, which is conducive to hydrology, climate change research, and monitoring of flood control and drought resistance.-
Key words:
- remote sensing /
- Sentinel-3A /
- water level /
- Synthetic Aperture Radar Altimeter /
- calibration /
- Poyang Lake
-
表 1 不同情形下卫星观测水位变化量与实测水位变化量的统计指标
Table 1. Comparison of results of water level change between satellite radar altimetry and in situ data
轨道 不同情形 期数 dMBE/m dRMSE /m dSTDEVA /m R 升轨 枯水期 8 −0.157 0.170 0.071 0.999 丰水期 18 −0.204 0.215 0.068 0.999 全部 26 −0.191 0.203 0.071 1.000 降轨 枯水期 5 −0.082 0.107 0.077 1.000 丰水期 18 −0.100 0.142 0.103 0.999 全部 23 −0.096 0.135 0.096 0.999 表 2 不同校准参数下的平均绝对偏差统计
Table 2. Mean absolute deviation statistics under different calibration parameters
平均绝对
偏差/
m方式1:两年校准
(2016—2017)
累积占比/%方式2:两年校准
(2017—2018)
累积占比/%方式3:三年校准
(2016—2018)
累积占比/%≤0.05 33 29 33 (0.05,0.10] 76 76 74 (0.10,0.15] 90 92 92 (0.15,0.20] 100 100 100 -
[1] 宋春桥, 詹鹏飞, 马荣华. 湖泊水情遥感研究进展[J]. 湖泊科学,2020,32(5):1406-1420 doi: 10.18307/2020.0514 SONG Chunqiao, ZHAN Pengfei, MA Ronghua. Progress in remote sensing study on lake hydrologic regime[J]. Journal of Lake Sciences, 2020, 32(5): 1406-1420. (in Chinese) doi: 10.18307/2020.0514 [2] 姜卫平, 褚永海, 李建成, 等. 利用ENVISAT测高数据监测青海湖水位变化[J]. 武汉大学学报·信息科学版,2008,33(1):64-67 JIANG Weiping, CHU Yonghai, LI Jiancheng, et al. Water level variation of Qinghai lake from altimeteric data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 64-67. (in Chinese) [3] ZHANG G Q, XIE H J, KANG S C, et al. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009)[J]. Remote Sensing of Environment, 2011, 115(7): 1733-1742. doi: 10.1016/j.rse.2011.03.005 [4] SONG C Q, YE Q H, SHENG Y W, et al. Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003—2014[J]. Water, 2015, 7(12): 4685-4700. doi: 10.3390/w7094685 [5] 赵云, 廖静娟, 沈国状, 等. 卫星测高数据监测青海湖水位变化[J]. 遥感学报,2017,21(4):633-644 ZHAO Yun, LIAO Jingjuan, SHEN Guozhuang, et al. Monitoring the water level changes in Qinghai Lake with satellite altimetry data[J]. Journal of Remote Sensing, 2017, 21(4): 633-644. (in Chinese) [6] MAILLARD P, BERCHER N, CALMANT S. New processing approaches on the retrieval of water levels in Envisat and SARAL radar altimetry over rivers: a case study of the São Francisco River, Brazil[J]. Remote Sensing of Environment, 2015, 156: 226-241. doi: 10.1016/j.rse.2014.09.027 [7] 王红, 孙福宝, 杨涛, 等. Jason2卫星测高数据在长江中游水位监测中的应用[J]. 三峡生态环境监测,2018,3(3):48-54 WANG Hong, SUN Fubao, YANG Tao, et al. Application of Jason2 satellite altimetry data to water level monitoring in the middle reaches of the Yangtze River[J]. Ecology and Environmental Monitoring of Three Gorges, 2018, 3(3): 48-54. (in Chinese) [8] 黎鹏, 李辉. 基于多源卫星测高数据的洞庭湖流域2003—2017年湖泊水位变化监测[J]. 地球科学,2020,45(6):1956-1966 LI Peng, LI Hui. Monitoring lake level variations in dongting lake basin over 2003—2017 using multi-mission satellite altimetry data[J]. Earth Science, 2020, 45(6): 1956-1966. (in Chinese) [9] JIANG L G, NIELSEN K, DINARDO S, et al. Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese rivers[J]. Remote Sensing of Environment, 2020, 237: 111546. doi: 10.1016/j.rse.2019.111546 [10] KITTEL C M M, JIANG L G, TØTTRUP C, et al. Sentinel-3 radar altimetry for river monitoring–a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B[J]. Hydrology and Earth System Sciences, 2021, 25(1): 333-357. doi: 10.5194/hess-25-333-2021 [11] 付波霖, 覃娇玲, 何宏昌, 等. 利用Jason-3/Sentinel-3A雷达高度计监测北部湾滨海湿地水位变化[J]. 农业工程学报,2021,37(5):184-190 doi: 10.11975/j.issn.1002-6819.2021.05.021 FU Bolin, QIN Jiaoling, HE Hongchang, et al. Monitoring the water level of coastal wetland in Beibu Gulf using Jason-3/Sentinel-3A altimetry satellites[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5): 184-190. (in Chinese) doi: 10.11975/j.issn.1002-6819.2021.05.021 [12] 胡振鹏, 傅静. 长江与鄱阳湖水文关系及其演变的定量分析[J]. 水利学报,2018,49(5):570-579 HU Zhenpeng, FU Jing. Quantitative study on hydrology relationship between the Yangtze River and Poyang Lake and its changes[J]. Journal of Hydraulic Engineering, 2018, 49(5): 570-579. (in Chinese) [13] 张范平, 方少文, 周祖昊, 等. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境,2017,26(1):126-133 ZHANG Fanping, FANG Shaowen, ZHOU Zuhao, et al. Research on multi-time-scale dynamic characteristics of water-level fluctuation of the Poyang lake in China[J]. Resources and Environment in the Yangtze Basin, 2017, 26(1): 126-133. (in Chinese) [14] 邓志民, 张翔, 肖洋, 等. 鄱阳湖水位演变及其影响因子分析[J]. 武汉大学学报(工学版),2015,48(5):615-621 DENG Zhimin, ZHANG Xiang, XIAO Yang, et al. Study of evolution of water level in Poyang Lake and impact factors[J]. Engineering Journal of Wuhan University, 2015, 48(5): 615-621. (in Chinese) [15] 刘惠英, 王永文, 关兴中. 鄱阳湖湿地适宜生态需水位研究: 以星子站水位为例[J]. 南昌工程学院学报,2012,31(3):46-50 doi: 10.3969/j.issn.1006-4869.2012.03.012 LIU Huiying, WANG Yongwen, GUAN Xingzhong. Research on suitable ecological water level in Poyang Lake wetland: a case study in Xingzi Hydrological Station[J]. Journal of Nanchang Institute of Technology, 2012, 31(3): 46-50. (in Chinese) doi: 10.3969/j.issn.1006-4869.2012.03.012 [16] DONLON C, BERRUTI B, BUONGIORNO A, et al. The global monitoring for environment and security (GMES) sentinel-3 mission[J]. Remote Sensing of Environment, 2012, 120: 37-57. doi: 10.1016/j.rse.2011.07.024 [17] MCFEETERS S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432. doi: 10.1080/01431169608948714 [18] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报,2005,9(5):589-595 XU Hanqiu. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5): 589-595. (in Chinese) [19] 张文, 崔长露, 李林宜, 等. 基于长时间序列遥感数据的鄱阳湖水面面积监测分析[J]. 水文,2019,39(3):29-35, 21 ZHANG Wen, CUI Changlu, LI Linyi, et al. Analysis of relationship between water area and water level based on long-term observation in Poyang lake[J]. Journal of China Hydrology, 2019, 39(3): 29-35, 21. (in Chinese) [20] MEDINA C E, GOMEZ-ENRI J, ALONSO J J, et al. Water level fluctuations derived from ENVISAT Radar Altimeter (RA-2) and in situ measurements in a subtropical waterbody: Lake Izabal (Guatemala)[J]. Remote Sensing of Environment, 2008, 112(9): 3604-3617. doi: 10.1016/j.rse.2008.05.001 [21] 张鑫, 吴艳红, 张鑫. 基于多源卫星测高数据的扎日南木错水位动态变化(1992—2012年)[J]. 自然资源学报,2015,30(7):1153-1162 doi: 10.11849/zrzyxb.2015.07.008 ZHANG Xin, WU Yanhong, ZHANG Xin. Zhari namco water level change detection using multi-satellite altimetric data during 1992-2012[J]. Journal of Natural Resources, 2015, 30(7): 1153-1162. (in Chinese) doi: 10.11849/zrzyxb.2015.07.008 [22] 何飞, 刘兆飞, 姚治君. Jason-2测高卫星对湖泊水位的监测精度评价[J]. 地球信息科学学报,2020,22(3):494-504 doi: 10.12082/dqxxkx.2020.190651 HE Fei, LIU Zhaofei, YAO Zhijun. Evaluation of the monitoring accuracy of lake water level by the Jason-2 altimeter satellite[J]. Journal of Geo-Information Science, 2020, 22(3): 494-504. (in Chinese) doi: 10.12082/dqxxkx.2020.190651 [23] 吴红波, 郭忠明, 毛瑞娟. ICESat-GLAS测高数据在长江中下游湖泊水位变化监测中的应用[J]. 资源科学,2012,34(12):2289-2298 WU Hongbo, GUO Zhongming, MAO Ruijuan. Monitoring lake water level changes in the middle and lower Yangtze River basin based on ICESat-GLAS altimetry data[J]. Resources Science, 2012, 34(12): 2289-2298. (in Chinese) [24] VILLADSEN H, DENG X L, ANDERSEN O B, et al. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers[J]. Journal of Hydrology, 2016, 537: 234-247. doi: 10.1016/j.jhydrol.2016.03.051 -