Performance of concrete with vacuum dewatering process
-
摘要: 为提高混凝土保护层的抗渗透性能并避免表面裂缝的产生,从而提升钢筋混凝土的耐久性,采用真空脱水工艺,通过宏观性能试验结合微观孔结构分析,研究了真空脱水混凝土的性能及其性能改善机理。试验结果表明:(1)真空脱水混凝土的配合比在试验设计范围内取较低的初始水胶比、较少的单位用水量和比非真空混凝土增加约20 %以上的适宜砂率,可以提高真空混凝土的真空脱水率和混凝土性能;(2)采用真空脱水工艺后,混凝土28 d抗压强度的提高值随着水胶比的增大而增加;混凝土72 h抗冲磨强度的提高值随着水胶比的增大而减小,低水胶比混凝土的抗冲磨性能的提高效果尤为显著;(3)与非真空混凝土相比,真空混凝土的干缩变形减小,抗渗透性能显著提高。孔结构分析结果表明:真空脱水主要增加了混凝土中20~50 nm这一孔级的体积含量,混凝土总孔隙率明显降低、最可几孔径减小、临界孔径和平均孔径均明显减小,从而优化和细化了混凝土孔结构。真空脱水工艺可以作为提高钢筋混凝土保护层性能的有效措施,供设计和施工参考。Abstract: In order to improve the permeability resistance of concrete protective layer and avoid surface cracks, and then improve the durability of reinforced concrete, vacuum dewatering process was adopted in this research. The performance of vacuum dewatered concrete and its improvement mechanism were studied by macroscopic performance test and micro pore structure analysis. The test results show that: (1) The vacuum dewatering rate and performance of vacuum dewatered concrete can be improved by using lower initial water-binder ratio, less water consumption per unit and more than about 20% suitable sand ratio compared with non-vacuum dewatered concrete. (2) After vacuum dewatering, the increamental value of compressive strength of concrete after 28 d increases with the water-binder ratio; and the improvement value of concrete abrasion resistance strength after 72 h decreases with the increase of water-binder ratio. And the improvement effect of low water-binder ratio on abrasion resistance strength is particularly significant. (3) Compared with non-vacuum dewatered concrete, the dry shrinkage deformation of vacuum dewatered concrete decreases and the permeability resistance of vacuum dewatered concrete improves significantly. The results of pore structure analysis show that vacuum dewatering process mainly increases the volume content of pore size of 20~50 nm in concrete, and the total porosity, maximum pore size, critical pore size and average pore size of concrete decrease obviously. Vacuum dewatering process optimizes and refines concrete pore structure. Vacuum dewatering process can be used as an effective measure to improve the performance of reinforced concrete protective layer.
-
Key words:
- vacuum dewatering process /
- strength /
- dry shrinkage /
- permeability resistance /
- concrete pore structure
-
表 1 水泥的化学成分
Table 1. Chemical compositions of cement
单位:% SiO2 Al2O3 CaO MgO Fe2O3 K2O SO3 烧失量 25.63 8.27 53.36 2.73 3.22 0.62 1.69 3.62 表 2 真空脱水混凝土配合比正交试验设计与试验结果
Table 2. Orthogonal test design and results of vacuum dewaterd concrete mix
试验号 因子 真空脱水率/% 28 d抗压强度/MPa A
水胶比B
砂率C
用水量/(kg·m−3)D
外加剂非真空 真空 1 0.40 0.38 150 聚羧酸系 11.0 45.1 49.1 2 0.40 0.44 160 氨基系 11.2 43.5 48.8 3 0.40 0.50 170 萘系 9.1 43.1 47.6 4 0.44 0.38 160 萘系 12.2 42.1 45.0 5 0.44 0.44 170 聚羧酸系 13.5 40.8 46.3 6 0.44 0.50 150 氨基系 13.0 40.2 45.2 7 0.48 0.38 170 氨基系 13.8 39.2 43.2 8 0.48 0.44 150 萘系 16.7 38.4 44.1 9 0.48 0.50 160 聚羧酸系 15.4 37.9 41.9 表 3 各因子对真空脱水混凝土性能影响的极差分析
Table 3. Range analysis in influence of each factor on the performance of vacuum dehydrated concrete
状态 性能参数 各因子的极差 水胶比 砂率 单位用水量 外加剂 极差R(脱水前) 28 d抗压强度 5.40 1.73 0.20 0.30 极差R(脱水后) 真空脱水率 4.87 1.47 1.43 0.63 28 d抗压强度 5.37 1.50 1.07 0.53 表 4 不同水胶比下真空脱水混凝土配合比及拌合物性能
Table 4. Mix ratio and properties of vacuum dewatered concrete with different water-binder ratios
试件编号 水胶比 砂率 用水量/ (kg·m−3) 外加剂掺量/% 水泥品种 坍落度/mm 真空脱水率/% PC-1 0.32 0.42 150 1.2 P·O 42.5 55 9.6 PC-2 0.40 0.46 150 1.2 P·O 42.5 65 14.4 PC-3 0.48 0.50 150 1.2 P·O 42.5 70 16.2 表 5 真空与非真空脱水混凝土抗渗性能试验结果
Table 5. Permeability resistance results of vacuum and non-vacuum dewatered concretes
工艺条件 试件平均渗水高度/mm 水压0.6 MPa 水压0.9 MPa 水压1.2 MPa 非真空脱水 3 8 16 真空脱水 5 8 10 表 6 真空与非真空脱水混凝土的孔结构参数
Table 6. Pore structure parameters of vacuum and non-vacuum dewatered concretes
试件及其部位 最可几孔径/nm 临界孔径/
nm平均孔径/nm 总孔隙率/
%非真空试件 PC-1 56.7 85.7 61.0 5.932 真空试件 表层 ZPC-1S 46.5 73.2 50.2 3.946 中间层 ZPC-1M 53.5 78.1 61.0 5.203 底层 ZPC-1B 56.7 81.0 62.4 5.466 非真空试件 PC-2 59.2 99.2 73.4 6.495 真空试件 表层 ZPC-2S 48.9 81.2 56.1 4.328 中间层 ZPC-2M 56.8 90.3 73.2 5.619 底层 ZPC-2B 57.6 96.2 76.2 5.609 -
[1] SALAS R M, SCHOKKER A J, WEST J S, et al. Corrosion risk of bonded, post-tensioned concrete elements[J]. PCI Journal, 2008, 53(1): 89-108. doi: 10.15554/pcij.01012008.89.108 [2] MEHTA P K. Durability-critical issues for the future[J]. Concrete International, 1997, 19(7): 27-33. [3] 中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准: GB/T 50476—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for design of concrete structure durability: GB/T 50476—2019[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese) [4] 杨进波. 混凝土保护层结构与渗透性现场检测方法的研究[D]. 北京: 清华大学, 2009. YANG Jinbo. Experimental research on the structure and the in-situ test method for the permeability of cover concrete[D]. Beijing: Tsinghua University, 2009. (in Chinese) [5] WITTMANN F H, 战洪艳, 赵铁军. 混凝土表面防水处理与氯离子隔离层的建立[J]. 建筑材料学报,2005,8(1):1-6. (WITTMANN F H, ZHAN Hongyan, ZHAO Tiejun. Water repellent treatment of concrete surface and establishment of chloride barrier[J]. Journal of Building Materials, 2005, 8(1): 1-6. (in Chinese) doi: 10.3969/j.issn.1007-9629.2005.01.001 WITTMANN F H, 战洪艳, 赵铁军. 混凝土表面防水处理与氯离子隔离层的建立[J]. 建筑材料学报, 2005, 8(1): 1-6. (WITTMANN F H, ZHAN Hongyan, ZHAO Tiejun. Water repellent treatment of concrete surface and establishment of chloride barrier[J]. Journal of Building Materials, 2005, 8(1): 1-6. (in Chinese) doi: 10.3969/j.issn.1007-9629.2005.01.001 [6] 程作渭, 陈章洪. 混凝土真空脱水技术[M]. 北京: 中国建筑工业出版社, 1986: 69-75. CHENG Zuowei, CHEN Zhanghong. Concrete vacuum dehydration technology[M]. Beijing: China Architecture & Building Press, 1986: 69-75. (in Chinese) [7] 沈东旺. 混凝土真空吸水工艺在道路施工方面的应用[J]. 山西建筑,2010,36(29):282-283. (SHEN Dongwang. Application of concrete vacuum absorption technique in road construction[J]. Shanxi Architecture, 2010, 36(29): 282-283. (in Chinese) doi: 10.3969/j.issn.1009-6825.2010.29.178 SHEN Dongwang. Application of concrete vacuum absorption technique in road construction[J]. Shanxi Architecture, 2010, 36(29): 282-283. (in Chinese) doi: 10.3969/j.issn.1009-6825.2010.29.178 [8] 刘辉. 运用真空脱水工艺处理混凝土路面的施工及研究[J]. 铁道工程学报,2001(4):116-120, 95. (LIU Hui. Study and construction of concrete pavement by using vacuum dehydration technology[J]. Journal of Railway Engineering Society, 2001(4): 116-120, 95. (in Chinese) doi: 10.3969/j.issn.1006-2106.2001.04.030 LIU Hui. Study and construction of concrete pavement by using vacuum dehydration technology[J]. Journal of Railway Engineering Society, 2001(4): 116-120, 95. (in Chinese) doi: 10.3969/j.issn.1006-2106.2001.04.030 [9] 姚文飞. 道路施工中混凝土真空处理技术的应用研究[J]. 科技与创新,2017(18):154-155. (YAO Wenfei. Application research on vacuum treatment technology of concrete in road construction[J]. Science and Technology & Innovation, 2017(18): 154-155. (in Chinese) YAO Wenfei. Application research on vacuum treatment technology of concrete in road construction[J]. Science and Technology & Innovation, 2017(18): 154-155. (in Chinese) [10] 田正林, 吴相豪. 成型方式对再生混凝土性能影响的试验研究[J]. 混凝土,2014(7):145-148. (TIAN Zhenglin, WU Xianghao. Experimental research of forming technology effects on properties of recycled concrete[J]. Concrete, 2014(7): 145-148. (in Chinese) doi: 10.3969/j.issn.1002-3550.2014.07.038 TIAN Zhenglin, WU Xianghao. Experimental research of forming technology effects on properties of recycled concrete[J]. Concrete, 2014(7): 145-148. (in Chinese) doi: 10.3969/j.issn.1002-3550.2014.07.038 [11] 张燕迟, 欧阳幼玲. 利用真空脱水工艺提高水工混凝土抗裂性[J]. 水利水运工程学报,2012(3):32-36. (ZHANG Yanchi, OUYANG Youling. Successful application of a vacuum dewatering process to increasing crack resistance of hydraulic concrete[J]. Hydro-Science and Engineering, 2012(3): 32-36. (in Chinese) doi: 10.3969/j.issn.1009-640X.2012.03.006 ZHANG Yanchi, OUYANG Youling. Successful application of a vacuum dewatering process to increasing crack resistance of hydraulic concrete[J]. Hydro-Science and Engineering, 2012(3): 32-36. (in Chinese) doi: 10.3969/j.issn.1009-640X.2012.03.006 [12] 孔繁龙, 钱文勋, 陈迅捷. 透水模板结合真空脱水工艺在船闸混凝土中的应用[J]. 水利水运工程学报,2012(3):83-86. (KONG Fanlong, QIAN Wenxun, CHEN Xunjie. Application of vacuum dewatering method with controlled permeability formwork technology to ship lock concrete[J]. Hydro-Science and Engineering, 2012(3): 83-86. (in Chinese) doi: 10.3969/j.issn.1009-640X.2012.03.014 KONG Fanlong, QIAN Wenxun, CHEN Xunjie. Application of vacuum dewatering method with controlled permeability formwork technology to ship lock concrete[J]. Hydro-Science and Engineering, 2012(3): 83-86. (in Chinese) doi: 10.3969/j.issn.1009-640X.2012.03.014 [13] 孔繁龙. 船闸混凝土结构裂缝防治综合技术[J]. 水运工程,2013(3):158-163, 194. (KONG Fanlong. Integrated technology of prevention and control of cracks on shiplock’s concrete structure[J]. Port & Waterway Engineering, 2013(3): 158-163, 194. (in Chinese) doi: 10.3969/j.issn.1002-4972.2013.03.032 KONG Fanlong. Integrated technology of prevention and control of cracks on shiplock’s concrete structure[J]. Port & Waterway Engineering, 2013(3): 158-163, 194. (in Chinese) doi: 10.3969/j.issn.1002-4972.2013.03.032 [14] 贺明, 杨长友. 合理设计真空混凝土配合比 进一步提高经济效益[J]. 混凝土与水泥制品,1989(4):13. (HE Ming, YANG Changyou. Reasonable design of mixture ratio of vacuum concrete and further improving economic benefit[J]. China Concrete and Cement Products, 1989(4): 13. (in Chinese) HE Ming, YANG Changyou. Reasonable design of mixture ratio of vacuum concrete and further improving economic benefit[J]. China Concrete and Cement Products, 1989(4): 13. (in Chinese) [15] 蒋正武, 孙振平, 王新友, 等. 国外混凝土自收缩研究进展评述[J]. 混凝土,2001(4):30-33, 18. (JIANG Zhengwu, SUN Zhenping, WANG Xinyou, et al. Review on research progress of autogenous shrinkage of concrete overseas[J]. Concrete, 2001(4): 30-33, 18. (in Chinese) doi: 10.3969/j.issn.1002-3550.2001.04.008 JIANG Zhengwu, SUN Zhenping, WANG Xinyou, et al. Review on research progress of autogenous shrinkage of concrete overseas[J]. Concrete, 2001(4): 30-33, 18. (in Chinese) doi: 10.3969/j.issn.1002-3550.2001.04.008 [16] 廉慧珍, 童良, 陈恩义. 建筑材料物相研究基础[M]. 北京: 清华大学出版社, 1996: 106. LIAN Huizhen, TONG Liang, CHEN Enyi. Fundamentals of phase research of building materials[M]. Beijing: Tsinghua University Press, 1996: 106. (in Chinese) [17] 赵铁军. 混凝土渗透性[M]. 北京: 科学出版社, 2006: 42. ZHAO Tiejun. Permeability of concrete[M]. Beijing: Science Press, 2006: 42. (in Chinese) -