Experimental study on shear failure characteristics of weak expansive oxidized soil under atmospheric conditions
-
摘要: 膨胀土体材料在大气环境下自然氧化,其黏粒的化学成分、矿物组分和颗粒结构将发生变化。通过XRF成分检测及室内土工试验方法,研究了不同围压条件下原状土样与氧化土样的剪切变形破坏规律,用硬化系数量化分析了土样从压缩硬化过渡到压剪混合破坏模态的非线性软化特征。结果表明:原状土样氧化后抗剪指标有所增强,内摩擦角变化是抗剪强度增加的关键因素。原状土样和氧化土样的剪切破坏机制较为复杂,在试验设定加载条件下,可能发生鼓曲状压缩、硬化压缩、压剪混合或剪切滑移等各类破坏模态。硬化系数可对土样加载过程中的剪切应力应变关系曲线进行量化,体现压缩硬化向压剪混合及剪切软化破坏模态过渡的非线性变化特征。可为膨胀土氧化效应研究及其土体稳定性分析提供一定的理论参考。Abstract: Under atmospheric environment conditions, the natural oxidation of expansive soil may occur, and the chemical composition, mineral composition and particle structure of clay particles may change. In order to study the effect of atmospheric oxidation on the physical properties of Liulin weak expansive soil, the chemical components of undisturbed soil and oxidized soil clay were compared by XRF component detection and laboratory geotechnical test methods. The shear deformation and failure modes of undisturbed soil and oxidized soil samples were studied under different confining pressures. The hardening characteristics of soil samples under compression and shear failure modes were analyzed by the principal stress-strain constitutive relation. The results show that the key factor is the change of the internal friction angle for the increase of the shear strength index. Under the experimental loading conditions, the failure modes of undisturbed soil samples and oxidized soil samples are different, and various failure modes may occur, such as buckling compression, hardening compression, compression and shear mixing, or shear slip. For soil materials with softening properties, the hardening coefficient can be used to describe the nonlinear characteristics of the sample transition from compression hardening to compression shear mixing and shear softening failure mode. This paper can provide a theoretical reference for the study of the oxidation effect of expansive soil and the analysis of its engineering stability.
-
表 1 柳林弱膨胀土与氧化土物理性质指标平均值
Table 1. Average values of physical indexes of Liulin expansive soil and oxidized clay
土样 含水率/% 密度/(g·cm−3) 干密度/(g·cm−3) 液限/% 塑限/% 塑性指数 自由膨胀率/% 标准吸湿含水率/% 原状样 20.8 1.904 1.576 51 30 21 53 3.5 氧化样1 18.9 1.879 1.580 57 31 26 48 3.1 氧化样2 17.2 1.929 1.645 55 30 25 50 3.5 表 2 柳林弱膨胀土与氧化土黏粒的化学成分
Table 2. Chemical compositions of Liulin expansive soil and oxidized clay
单位:% 土样 黏粒化学成分及质量比 MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 ZnO Rb2O SrO ZrO2 原状样 1.20 14.52 51.60 0.10 6.51 2.46 2.13 0.18 20.90 0.06 0.09 0.10 0.14 氧化样1 1.22 13.46 49.78 0.25 6.13 3.88 2.07 0.33 22.46 0.11 0.12 0.16 氧化样2 0.91 15.02 51.26 5.90 2.52 1.84 0.39 21.67 0.08 0.11 0.11 0.19 注:质量比为烘干(烘箱控温105~110 ℃)状态下,各黏粒化学成分的质量占比。 表 3 柳林弱膨胀土与氧化土最大主应力差及其均值
Table 3. Maximum principal stress difference and its mean value of Liulin expansive soil and oxidized soil
单位:kPa 土样类别 无侧限条件 50 kPa围压 100 kPa围压 200 kPa围压 主应力差 均值 主应力差 均值 主应力差 均值 主应力差 均值 原状土 191.0 193.0 222.1 224.7 278.1 290.9 344.9 370.8 181.3 241.5 296.4 394.9 206.4 210.4 298.2 372.6 氧化样1 213.2 201.2 229.2 250.9 319.2 319.1 431.4 417.1 197.1 268.5 303.8 430.1 192.7 255.1 334.3 389.9 氧化样2 184.1 198.9 218.1 234.8 304.3 299.2 386.9 385. 6 204.9 254.3 298.5 364.7 207.7 232.0 294.7 402.3 -
[1] NELSON J D, MILLER D J. Expansive soils: problems and practice in foundation and pavement engineering[M]. New York: John Wiley, 1992. [2] ALDAOOD A, BOUASKER M, AL-MUKHTAR M. Impact of wetting–drying cycles on the microstructure and mechanical properties of lime-stabilized gypseous soils[J]. Engineering Geology, 2014, 174: 11-21. doi: 10.1016/j.enggeo.2014.03.002 [3] FU J T, HU X S, LI X L, et al. Influences of soil moisture and salt content on loess shear strength in the Xining Basin, northeastern Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 2019, 16(5): 1184-1197. doi: 10.1007/s11629-018-5206-9 [4] 李进前, 王起才, 张戎令, 等. 膨胀土膨胀变形试验研究[J]. 水利水运工程学报,2019(1):60-66 LI Jinqian, WANG Qicai, ZHANG Rongling, et al. Experimental study on expansion and deformation of expansive soil[J]. Hydro-Science and Engineering, 2019(1): 60-66. (in Chinese) [5] 曾浩, 唐朝生, 刘昌黎, 等. 膨胀土干燥过程中收缩应力的测试与分析[J]. 岩土工程学报,2019,41(4):717-725 ZENG Hao, TANG Chaosheng, LIU Changli, et al. Measurement and analysis of shrinkage stress of expansive soils during drying process[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 717-725. (in Chinese) [6] 庄心善, 赵汉文, 陶高梁, 等. 循环荷载下弱膨胀土累积变形与动强度特性试验研究[J]. 岩土力学,2020,41(10):3192-3200 ZHUANG Xinshan, ZHAO Hanwen, TAO Gaoliang, et al. Accumulated deformation and dynamic strength properties of weak expansive soil under cyclic loading[J]. Rock and Soil Mechanics, 2020, 41(10): 3192-3200. (in Chinese) [7] 李晶晶, 孔令伟. 膨胀土卸荷蠕变特性及其非线性蠕变模型[J]. 岩土力学,2019,40(9):3465-3473 LI Jingjing, KONG Lingwei. Creep properties of expansive soil under unloading stress and its nonlinear constitutive model[J]. Rock and Soil Mechanics, 2019, 40(9): 3465-3473. (in Chinese) [8] 方晓阳. 21世纪环境岩土工程展望[J]. 岩土工程学报,2000,22(1):1-11 doi: 10.3321/j.issn:1000-4548.2000.01.001 FANG Xiaoyang. Environmental geotechnology-perspective in the 21st century[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 1-11. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.01.001 [9] 张先伟, 孔令伟. 常温、常压、常态的大气环境下黏性土微观孔隙的缓慢变异特征[J]. 中国科学: 技术科学,2014,44(2):189-200 doi: 10.1360/092013-720 ZHANG Xianwei, KONG Lingwei. Research on variability characteristics of micropore of Zhanjiang clay under ambient temperature and pressure, normal atmospheric[J]. Scientia Sinica: Technologica, 2014, 44(2): 189-200. (in Chinese) doi: 10.1360/092013-720 [10] 柏立懂, 罗志华, 崔可锐, 等. 合徐高速北段膨胀土的物质组分及微结构研究[J]. 合肥工业大学学报(自然科学版),2006,29(1):31-36 BAI Lidong, LUO Zhihua, CUI Kerui, et al. Research on the composition and microstructure of expansive soils in the north section of Hefei-Xuzhou Expressway[J]. Journal of Hefei University of Technology, 2006, 29(1): 31-36. (in Chinese) [11] 朱兴华, 彭建兵, 同霄, 等. 黄土地区地质灾害链研究初探[J]. 工程地质学报,2017,25(1):117-122 ZHU Xinghua, PENG Jianbing, TONG Xiao, et al. Preliminary research on geological disaster chains in loess area[J]. Journal of Engineering Geology, 2017, 25(1): 117-122. (in Chinese) [12] 薛翊国, 孔凡猛, 杨为民, 等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报,2020,39(3):445-468 XUE Yiguo, KONG Fanmeng, YANG Weimin, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 445-468. (in Chinese) [13] LU Y F. Deformation and failure mechanism of slope in three dimensions[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(2): 109-119. doi: 10.1016/j.jrmge.2015.02.008 [14] TU M Y, LU Y F, LIU D F. Study of mechanical properties of landslides in different stress state[J]. Materials Research Innovations, 2014, 18(Suppl2): S2-863-S2-868. [15] 朱慧. 主应力-应变全过程本构模型及位移求解研究[D]. 武汉: 湖北工业大学, 2019. ZHU Hui. Constitutive model and displacement solution for the whole process of principal stress-strain[D]. Wuhan: Hubei University of Technology, 2019. (in Chinese) [16] 杨洋. 膨胀土判别和膨胀潜势分类研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005. YANG Yang. Study of distinguishing of expansive soils and classification of expansive potential[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2005. (in Chinese) [17] 赵中源, 马国. 土的三轴剪切试验及抗剪参数计算[J]. 工业技术创新,2019,6(4):66-70 ZHAO Zhongyuan, MA Guo. Triaxial test and shear strength parameter calculation for soil[J]. Industrial Technology Innovation, 2019, 6(4): 66-70. (in Chinese) [18] 龙万学, 陈开圣, 肖涛, 等. 非饱和红黏土三轴试验研究[J]. 岩土力学,2009,30(增刊2):28-33 LONG Wanxue, CHEN Kaisheng, XIAO Tao, et al. Research of general triaxial test for unsaturated red clay[J]. Rock and Soil Mechanics, 2009, 30(Suppl2): 28-33. (in Chinese) -