Study on volume changes and strength characteristics of expansive soil under complex boundary conditions
-
摘要: 季节性冻土地区的渠基土易受现场复杂环境的影响,从而影响渠道安全运行。以北疆典型渠道为背景,开展湿干、冻融及其耦合循环条件下渠基膨胀土的体变特性和抗压强度试验研究,探讨不同循环边界条件、不同循环次数下渠基土的变形特征和强度特性。试验结果表明:在湿干循环过程中,试样体积变幅在4次湿干循环后趋于恒定;在冻融循环过程中,试样的体积变幅随冻融循环次数的增长而逐渐减小;在耦合循环过程中,试样的体变特性受湿干效应和冻融效应的综合影响,发生“冻胀融沉”和“冻缩融胀”的临界饱和度约为70%,同时耦合循环中的湿干过程对试样在后续冻结、融化过程中的体变有一定的弱化作用。耦合循环条件下试样的抗压强度衰减最为显著,7次耦合循环后,试样的抗压强度降低了46.9%~59.1%。湿干循环和冻融循环条件下试样的抗压强度衰减程度则与饱和度相关。研究结果可为北疆膨胀土输水渠道的建设与维护提供参考。Abstract: The soil in seasonally frozen soil regions is easy to be affected by the coupling environment, which is related to the canal operation. Taking the typical canals in Northern Xinjiang as background, the experimental study on the volume changes and strength of expansive soil under wet-dry (WD), freeze-thaw (FT) and coupled wet-dry-freeze-thaw (WDFT) cycles was carried out. The deformation and strength characteristics of expansive soil under the different boundary conditions and cycles are discussed. The results show that the volume changes of samples tend to be constant after four WD cycles. During the FT cycles, the volume change of samples decreases with the increasing FT cycles. In the coupled WDFT cycles, the volume changes of samples are affected by the combination of WD effect and FT effect. The saturation of approximately 70% may be the critical saturation for the occurrence of “frost shrinking and thaw expanding” and “frost expanding and thawing shrinking”. The WD process in the coupled WDFT cycles has a certain weakening effect on the volume changes of samples during the subsequent FT process in the coupled WDFT cycles. Meanwhile, the strength of samples decreases significantly under the coupled WDFT cycles. After 7 coupled WDFT cycles, the sample strength decreases by 46.9%~59.1%. The attenuation degree of strength is related to saturation under WD cycles and FT cycles. The research results can provide a basis for the construction and maintenance of expansive soil canals in Northern Xinjiang.
-
Key words:
- wetting-drying cycles /
- freezing-thawing cycles /
- canal /
- expansive soil /
- compressive strength
-
表 1 土样基本特性
Table 1. Basic properties of soils
最大干密度/(g·cm−3) 最优含水率/% 液限/% 塑限/% 自由膨胀率/% 小于某粒径的质量百分比/% <0.005 mm <0.075 mm <0.250 mm <0.500 mm <2.000 mm 1.70 18.4 18.4 52.6 71.0 31.5 70.1 82.6 90.2 100 -
[1] 陈永, 黄英豪, 朱洵, 等. 冻融循环对膨胀土变形和力学特性的影响研究[J]. 水利水运工程学报,2021(5):112-119 CHEN Yong, HUANG Yinghao, ZHU Xun, et al. Study on the influence of freeze-thaw cycles on the deformation and mechanical properties of expansive soil[J]. Hydro-Science and Engineering, 2021(5): 112-119. (in Chinese) [2] 朱锐, 黄英豪, 张晨, 等. 季节性供水渠道边坡稳定性研究[J]. 水利水运工程学报,2021(1):124-132 doi: 10.12170/20200302002 ZHU Rui, HUANG Yinghao, ZHANG Chen, et al. Research on the slope stability of seasonally running canals[J]. Hydro-Science and Engineering, 2021(1): 124-132. (in Chinese) doi: 10.12170/20200302002 [3] ZHU R, CAI Z Y, HUANG Y H, et al. Centrifugal and field studies on water infiltration characteristics below canals under wetting-drying-freezing-thawing cycles[J]. Journal of Central South University, 2021, 28(5): 1519-1533. doi: 10.1007/s11771-021-4703-0 [4] 黄英豪, 蔡正银, 朱锐, 等. 季冻区渠道湿干冻融离心模拟试验设备的研制[J]. 岩土工程学报,2020,42(7):1181-1188 HUANG Yinghao, CAI Zhengyin, ZHU Rui, et al. Development of centrifuge model test equipment for canals in seasonal frozen areas under cyclic action of wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1181-1188. (in Chinese) [5] 朱锐, 蔡正银, 黄英豪, 等. 冻融过程对高寒区渠道基土力学特性的影响[J]. 农业工程学报,2021,37(14):108-116 doi: 10.11975/j.issn.1002-6819.2021.14.012 ZHU Rui, CAI Zhengyin, HUANG Yinghao, et al. Effect of freezing-thawing process on the mechanical properties of canal foundation soils in cold regions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 108-116. (in Chinese) doi: 10.11975/j.issn.1002-6819.2021.14.012 [6] 李国维, 李亚帅, 袁俊平, 等. 引江济淮工程河道边坡膨胀土开裂规律及影响因素[J]. 农业工程学报,2018,34(12):154-161 doi: 10.11975/j.issn.1002-6819.2018.12.018 LI Guowei, LI Yashuai, YUAN Junping, et al. Crack development rule of expensive soil and its influence factors in river slope of Project of Leasing Water from Yangtze to Huai River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 154-161. (in Chinese) doi: 10.11975/j.issn.1002-6819.2018.12.018 [7] 唐朝生, 施斌. 干湿循环过程中膨胀土的胀缩变形特征[J]. 岩土工程学报,2011,33(9):1376-1384 TANG Chaosheng, SHI Bin. Swelling and shrinkage behaviour of expansive soil during wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1376-1384. (in Chinese) [8] 魏星, 王刚. 干湿循环作用下击实膨胀土胀缩变形模拟[J]. 岩土工程学报,2014,36(8):1423-1431 doi: 10.11779/CJGE201408007 WEI Xing, WANG Gang. Modeling swell-shrink behavior of compacted expansive clays subjected to cyclic drying and wetting[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1423-1431. (in Chinese) doi: 10.11779/CJGE201408007 [9] LU Y, LIU S H, ALONSO E, et al. Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles[J]. Cold Regions Science and Technology, 2019, 157: 206-214. doi: 10.1016/j.coldregions.2018.10.008 [10] 许雷, 刘斯宏, 鲁洋, 等. 冻融循环下膨胀土物理力学特性研究[J]. 岩土力学,2016,37(增刊2):167-174 XU Lei, LIU Sihong, LU Yang, et al. Physico-mechanical properties of expansive soil under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2016, 37(Suppl2): 167-174. (in Chinese) [11] 蔡正银, 朱锐, 黄英豪, 等. 冻融过程对膨胀土渠道边坡劣化模式的影响[J]. 水利学报, 2020, 51(8): 51(8): 915-923 CAI Zhengyin, ZHU Rui, HUANG Yinghao, et al. Influences of freeze-thaw process on the deterioration mode of expansive soil canal slope[J]. Journal of Hydraulic Engineering, 2020, 51(8): 915-923. (in Chinese) [12] 蔡正银, 陈皓, 黄英豪, 等. 考虑干湿循环作用的膨胀土渠道边坡破坏机理研究[J]. 岩土工程学报,2019,41(11):1977-1982 CAI Zhengyin, CHEN Hao, HUANG Yinghao, et al. Failure mechanism of canal slopes of expansive soils considering action of wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1977-1982. (in Chinese) [13] 蔡正银, 朱锐, 黄英豪, 等. 湿干冻融耦合循环作用下渠道劣化过程离心模型试验研究[J]. 岩土工程学报,2020,42(10):1773-1782 CAI Zhengyin, ZHU Rui, HUANG Yinghao, et al. Centrifugal model tests on deterioration process of canal under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1773-1782. (in Chinese) [14] 中华人民共和国住房和城乡建设部. 膨胀土地区建筑技术规范: GB 50112—2013[S]. 北京: 中国建筑工业出版社, 2012. Ministry of Housing and Urban Rural Development of the People’s Republic of China. Technical code for buildings in expansive soil regions: GB 50112—2013[S]. Beijing: China Building Industry Press, 2012. (in Chinese) [15] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese) [16] ZENG Z X, KONG L W, WANG M, et al. Assessment of engineering behaviour of an intensely weathered swelling mudstone under full range of seasonal variation and the relationships among measured parameters[J]. Canadian Geotechnical Journal, 2018, 55(12): 1837-1849. doi: 10.1139/cgj-2017-0582 [17] LIU Y W, WANG Q, LIU S W, et al. Experimental investigation of the geotechnical properties and microstructure of lime-stabilized saline soils under freeze-thaw cycling[J]. Cold Regions Science and Technology, 2019, 161: 32-42. doi: 10.1016/j.coldregions.2019.03.003 [18] 曾召田, 刘发标, 吕海波, 等. 干湿交替环境下膨胀土变形试验研究[J]. 水利与建筑工程学报,2015,13(3):72-76 doi: 10.3969/j.issn.1672-1144.2015.03.014 ZENG Zhaotian, LIU Fabiao, LÜ Haibo, et al. Experimental study on deformation of expansive soil in alternation of wet-dry environment[J]. Journal of Water Resources and Architectural Engineering, 2015, 13(3): 72-76. (in Chinese) doi: 10.3969/j.issn.1672-1144.2015.03.014 [19] 曾召田, 吕海波, 赵艳林, 等. 膨胀土干湿循环效应及其对边坡稳定性的影响[J]. 工程地质学报,2012,20(6):934-939 doi: 10.3969/j.issn.1004-9665.2012.06.005 ZENG Zhaotian, LÜ Haibo, ZHAO Yanlin, et al. Wetting-drying effect of expansive soils and its influence on slope stability[J]. Journal of Engineering Geology, 2012, 20(6): 934-939. (in Chinese) doi: 10.3969/j.issn.1004-9665.2012.06.005 [20] VIKLANDER P. Permeability and volume changes in till due to cyclic freeze/thaw[J]. Canadian Geotechnical Journal, 1998, 35(3): 471-477. doi: 10.1139/t98-015 [21] 朱洵. 湿干冻融耦合作用下膨胀土渠道破坏机制及稳定性研究[D]. 南京: 南京水利科学研究院, 2019. ZHU Xun. Failure mechanism and stability analysis for expansive soil channel under cyclic action of coupling wetting-drying and freeze-thaw[D]. Nanjing: Nanjing Hydraulic Research Institute, 2019. (in Chinese) [22] 吴旭阳, 梁庆国, 牛富俊, 等. 黄土剪切应变硬化-软化分类试验研究[J]. 地下空间与工程学报,2017,13(6):1457-1466 WU Xuyang, LIANG Qingguo, NIU Fujun, et al. Study on hardened and softened classification in shear test[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(6): 1457-1466. (in Chinese) -