Permeability coefficient investigation based on fractal characteristics of porous media soil
-
摘要: 堤坝工程渗流计算中确定土体渗透系数尤为重要。利用分形维数不同尺度域,分析渗透破坏试验土样无标度区,指出土体细颗粒含量是决定土体分形维数的主要因素。基于多孔介质毛管束模型,推导了渗透系数和孔隙率与分形维数之间分形关系解析式,阐释了多孔介质土体渗透系数影响因子包括分形系数、孔径大小、分形维数及流体黏滞系数。利用土体渗透破坏试验结果,进一步论证了渗透系数和孔隙率与分形维数之间的非线性关系。结果表明:当分形维数大于2.83时,孔隙率随着分形维数的增大而减小,但在颗粒吸着水和薄膜水形成的黏聚力影响下,渗透系数随着分形维数增大而减小的规律不明显。研究结果可为渗透破坏形成机制及发展过程分析提供理论依据,减少堤坝渗透破坏致灾隐患。Abstract: Permeability coefficient of soil is extremely important to dike and dam engineering. Scale-invariant space of seepage failure testing soils were statistically analyzed by multifractal dimensions, which shows that fine particle content is the major factor of mass fractal dimension. Based on a pipe bundle model of porous medium, the theoretical relationship between permeability coefficient and porosity was deduced, indicating that the influence factors of permeability coefficient include fractal coefficient, particle size, fractal dimension and fluid viscosity coefficient. The nonlinear relationship of permeability coefficient, porosity and fractal dimension was verified for further studies based on seepage failure experimental results. The results show that when the fractal dimension value is greater than 2.83, porosity decreases obviously with the increase of the fractal dimension, while permeability coefficient decreases insignificantly under the cohesive force of hydroscopic water and film water. The results provide a theoretical base for seepage formation mechanism and evolution process, which can decrease the seepage disaster risk of dams.
-
Key words:
- porous media /
- seepage failure /
- permeability coefficient /
- scale-invariant space /
- fractal dimensions
-
表 1 不同试验土样颗粒级配
Table 1. Particle size distribution of different experimental soils
土样 不同粒径区间质量百分比/% >20 mm 20~10 mm 10~5 mm 5~2 mm 2~1 mm 1~0.5 mm 0.5~0.25 mm 0.25~0.10 mm 0.10~0.075 mm 0.075~0.025 mm <0.025 mm 1 5.37 19.98 26.38 16.68 8.96 8.61 8.22 4.80 0.70 0.21 0.09 2 8.32 17.92 29.97 15.85 9.12 8.55 8.34 1.80 0.08 0.04 0.01 3 7.32 20.32 30.73 14.97 11.45 10.23 3.23 1.47 0.20 0.06 0.02 4 6.85 19.42 26.56 18.54 13.22 9.43 4.18 1.70 0.07 0.02 0.01 5 2.58 10.80 15.42 15.94 17.32 20.30 12.64 4.70 0.20 0.08 0.02 6 1.16 5.30 9.70 9.93 11.22 19.37 18.32 14.55 8.45 1.98 0.02 7 / / / 0.30 1.80 6.80 22.12 35.30 20.38 8.21 5.09 8 / / / / 0.10 2.34 11.23 32.21 33.28 15.20 5.64 9 / / / / / / / / 0.87 2.11 97.02 10 / / / / / / / / 4.91 10.67 84.42 注:编号1~4为圆砾,5~8为砂,9~10为黏土。 表 2 不同试验土样质量分形维数与无标度区统计结果
Table 2. Statistical results of mass fractal dimension and scale-invariant space of different experimental soils
土样编号 土样类别 无标度区/mm 无标度区土体
颗粒含量/%分形维数 相关系数 下限 上限 1 圆砾 0.250 20.000 88.83 2.652 6 0.954 3 2 圆砾 0.250 20.000 89.75 2.734 6 0.881 2 3 圆砾 0.500 20.000 87.70 2.613 0 0.993 7 4 圆砾 0.500 20.000 87.17 2.567 8 0.984 1 5 粗砂 0.500 10.000 68.98 2.870 9 0.996 1 6 中砂 0.250 10.000 68.54 2.839 5 0.936 9 7 细砂 0.100 0.500 57.42 2.898 2 0.789 6 8 粉砂 0.075 0.250 65.49 2.999 0 0.906 6 9 黏土 0.002 0.005 97.02 2.995 1 0.903 9 10 黏土 0.002 0.005 84.42 2.966 0 0.882 1 -
[1] MANDELBROT B B. Fractal: Form, chance and dimension[M]. San Francisco: Freeman, 1977. [2] OUYANG M, TAKAHASHI A. Influence of initial fines content on fabric of soils subjected to internal erosion[J]. Canadian Geotechnical Journal, 2016, 53(2): 299-313. doi: 10.1139/cgj-2014-0344 [3] ISRAR J, INDRARATNA B. Study of critical hydraulic gradients for seepage-induced failures in granular soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019025. doi: 10.1061/(ASCE)GT.1943-5606.0002062 [4] WANG Y, WANG S J, DUAN X B, et al. Physical modelling of initial seepage failure process[J]. International Journal of Physical Modelling in Geotechnics, 2015, 15(4): 1-9. [5] 陈建生, 何文政, 王霜, 等. 双层堤基管涌破坏过程中上覆层渗透破坏发生发展的试验与分析[J]. 岩土工程学报,2013,35(10):1777-1783. (CHEN Jiansheng, HE Wenzheng, WANG Shuang, et al. Laboratory tests on development of seepage failure of overlying layer during piping of two-stratum dike foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1777-1783. (in Chinese) CHEN Jiansheng, HE Wenzheng, WANG Shuang, et al. Laboratory tests on development of seepage failure of overlying layer during piping of two-stratum dike foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1777-1783. (in Chinese) [6] 朱晟, 邓石德, 宁志远, 等. 基于分形理论的堆石料级配设计方法[J]. 岩土工程学报,2017,39(6):1151-1155. (ZHU Sheng, DENG Shide, NING Zhiyuan, et al. Gradation design method for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. (in Chinese) doi: 10.11779/CJGE201706023 ZHU Sheng, DENG Shide, NING Zhiyuan, et al. Gradation design method for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. (in Chinese) doi: 10.11779/CJGE201706023 [7] 王宇, 王士军, 谷艳昌. 基于分形理论的多孔介质渗透破坏研究[J]. 中国农村水利水电,2016(3):80-83, 87. (WANG Yu, WANG Shijun, GU Yanchang. Research on seepage failure in porous media based on fractal theory[J]. China Rural Water and Hydropower, 2016(3): 80-83, 87. (in Chinese) doi: 10.3969/j.issn.1007-2284.2016.03.019 WANG Yu, WANG Shijun, GU Yanchang. Research on seepage failure in porous media based on fractal theory[J]. China Rural Water and Hydropower, 2016(3): 80-83, 87. (in Chinese) doi: 10.3969/j.issn.1007-2284.2016.03.019 [8] KONG X X, LIU Q S, LU H F. Effects of rock specimen size on mechanical properties in laboratory testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(5): 04021013. doi: 10.1061/(ASCE)GT.1943-5606.0002478 [9] YOUSEFI M, SEDGHI-ASL M, PARVIZI M. Seepage and boiling around a sheet pile under different experimental configuration[J]. Journal of Hydrologic Engineering, 2016, 21(12): 06016015. doi: 10.1061/(ASCE)HE.1943-5584.0001449 [10] 卞士海, 李国英, 米占宽. 分形理论在堆石料流变中的应用[J]. 水利水运工程学报,2017(6):60-68. (BIAN Shihai, LI Guoying, MI Zhankuan. Application of fractal theory in rockfill rheology[J]. Hydro-Science and Engineering, 2017(6): 60-68. (in Chinese) BIAN Shihai, LI Guoying, MI Zhankuan. Application of fractal theory in rockfill rheology[J]. Hydro-Science and Engineering, 2017(6): 60-68. (in Chinese) [11] 王宇, 陈超, 陈祥勇. 土石坝渗流安全预测预警研究[J]. 水利水电技术,2018,49(11):68-74. (WANG Yu, CHEN Chao, CHEN Xiangyong. Study on prediction and early-warning of seepage safety for earth-rockfill dam[J]. Water Resources and Hydropower Engineering, 2018, 49(11): 68-74. (in Chinese) WANG Yu, CHEN Chao, CHEN Xiangyong. Study on prediction and early-warning of seepage safety for earth-rockfill dam[J]. Water Resources and Hydropower Engineering, 2018, 49(11): 68-74. (in Chinese) [12] 谢和平. 分形几何及其在岩土力学中的应用[J]. 岩土工程学报,1992,14(1):14-24. (XIE Heping. Fractal geometry and its application to rock and soil materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 14-24. (in Chinese) doi: 10.3321/j.issn:1000-4548.1992.01.002 XIE Heping. Fractal geometry and its application to rock and soil materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 14-24. (in Chinese) doi: 10.3321/j.issn:1000-4548.1992.01.002 [13] RAMADAN S H, EL NAGGAR M H. Field monitoring and numerical analysis of large-span three-sided reinforced concrete culvert[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(4): 04021008. doi: 10.1061/(ASCE)GT.1943-5606.0002489 [14] 徐永福, 黄寅春. 分形理论在研究非饱和土力学性质中的应用[J]. 岩土工程学报,2006,28(5):635-638. (XU Yongfu, HUANG Yinchun. Fractal-textured soils and their unsaturated mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 635-638. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.05.017 XU Yongfu, HUANG Yinchun. Fractal-textured soils and their unsaturated mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 635-638. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.05.017 [15] TAO G L, WU X K, XIAO H L, et al. A unified fractal model for permeability coefficient of unsaturated soil[J]. Fractals, 2019, 27(1): 1940012. doi: 10.1142/S0218348X19400127 [16] 段祥宝, 刘运化, 杨超, 等. 土体渗透变形及渗透破坏过程中分形特征初探[J]. 水电能源科学,2013,31(7):100-103, 214. (DUAN Xiangbao, LIU Yunhua, YANG Chao, et al. Preliminary study on fractal law of levees soil seepage deformation and failure[J]. Water Resources and Power, 2013, 31(7): 100-103, 214. (in Chinese) DUAN Xiangbao, LIU Yunhua, YANG Chao, et al. Preliminary study on fractal law of levees soil seepage deformation and failure[J]. Water Resources and Power, 2013, 31(7): 100-103, 214. (in Chinese) [17] 陶高梁, 李进, 崔惜琳. 不同颗粒级配的砂土渗流破坏特性[J]. 土木工程与管理学报,2019,36(2):90-97. (TAO Gaoliang, LI Jin, CUI Xilin. Seepage failure characteristics of sand with different grain composition[J]. Journal of Civil Engineering and Management, 2019, 36(2): 90-97. (in Chinese) doi: 10.3969/j.issn.2095-0985.2019.02.014 TAO Gaoliang, LI Jin, CUI Xilin. Seepage failure characteristics of sand with different grain composition[J]. Journal of Civil Engineering and Management, 2019, 36(2): 90-97. (in Chinese) doi: 10.3969/j.issn.2095-0985.2019.02.014 [18] RICHARDS K S, REDDY K R. Experimental investigation of initiation of backward erosion piping in soils[J]. Geotechnique, 2012, 62(10): 933-942. doi: 10.1680/geot.11.P.058 [19] KIM H J, PARK J M, SHIN J H. Flow behaviour and piping potential at the soil-structure interface[J]. Geotechnique, 2019, 69(1): 79-84. doi: 10.1680/jgeot.17.T.020 [20] 王小杰, 姜仁贵, 解建仓, 等. 基于分形和R/S分析的渭河干流径流变化特征研究[J]. 水利水运工程学报,2019(1):102-108. (WANG Xiaojie, JIANG Rengui, XIE Jiancang, et al. Analysis of runoff variation characteristics in the mainstream of Weihe River based on fractal theory and R/S analysis method[J]. Hydro-Science and Engineering, 2019(1): 102-108. (in Chinese) WANG Xiaojie, JIANG Rengui, XIE Jiancang, et al. Analysis of runoff variation characteristics in the mainstream of Weihe River based on fractal theory and R/S analysis method[J]. Hydro-Science and Engineering, 2019(1): 102-108. (in Chinese) [21] 刘星志, 吴悦, 潘诗婷, 等. 颗粒级配对非饱和红土土-水特征曲线的影响[J]. 水利水运工程学报,2018(5):103-110. (LIU Xingzhi, WU Yue, PAN Shiting, et al. Influences of different grain size contents on soil-water characteristic curve of unsaturated laterite based on fractal theory[J]. Hydro-Science and Engineering, 2018(5): 103-110. (in Chinese) LIU Xingzhi, WU Yue, PAN Shiting, et al. Influences of different grain size contents on soil-water characteristic curve of unsaturated laterite based on fractal theory[J]. Hydro-Science and Engineering, 2018(5): 103-110. (in Chinese) [22] TURCOTTE D L. Fractals and fragmentation[J]. Journal of Geophysical Research, 1986, 91(B2): 1921-1926. doi: 10.1029/JB091iB02p01921 [23] TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America, 1992, 56(2): 362-369. doi: 10.2136/sssaj1992.03615995005600020005x [24] 王宇. 土石坝渗流分形特性与预警模型研究[D]. 南京: 南京水利科学研究院, 2017. WANG Yu. Study on seepage fractal characteristics and early-warning model of earth-rockfill dam[D]. Nanjing: Nanjing Hydraulic Research Institute, 2017. (in Chinese) [25] 刘炳瑞, 林建忠. 多颗粒在Giesekus流体Poiseuille流场中的异常迁移[J]. 水动力学研究与进展,2021,36(1):1-4. (LIU Bingrui, LIN Jianzhong. Abnormal migration of multi-particles in Poiseuille flow of Giesekus fluid[J]. Chinese Journal of Hydrodynamics, 2021, 36(1): 1-4. (in Chinese) LIU Bingrui, LIN Jianzhong. Abnormal migration of multi-particles in Poiseuille flow of Giesekus fluid[J]. Chinese Journal of Hydrodynamics, 2021, 36(1): 1-4. (in Chinese) -