Study on energy and momentum correction coefficients in compound open-channel flows
-
摘要: 在复式断面明渠流中,能量及动量校正系数对水力学计算结果的精确性有直接影响。为研究水深比(滩地水深与主槽水深之比)及滩地植被密度对复式断面明渠流能量及动量校正系数的影响,采用基于壁面建模的大涡模拟(WMLES)方法的三维数值模型,对5种水深比和3种植被密度工况进行数值模拟研究。结果表明:由于流速分布不均匀,主槽和滩地的能量及动量校正系数有明显差异,其值均大于1。随着水深比的增大,复式断面的流速分布趋向均匀,能量和动量校正系数随之减小,能量校正系数的变化范围为1.07~1.19,动量校正系数的变化范围为1.03~1.07。此外,随着滩地植被密度的增大,滩地与主槽的流速差值变大,能量和动量校正系数随之增大,能量校正系数的变化范围为1.09~1.59,动量校正系数的变化范围为1.04~1.21。最后,通过回归分析发现能量校正系数与动量校正系数存在线性关系,所得计算式可用于相同工况条件下能量及动量校正系数的预测。Abstract: In compound open-channel, the energy and momentum correction coefficients have a direct impact on the accuracy of hydraulics calculation. The purpose of this study was to investigate the impacts of flow depth ratios and vegetation densitis on the distributions of energy and momentum correction coefficients in compound open-channel flows. Numerical simulations were performed with a three-dimensional model with the wall-modelled large eddy simulation (WMLES) method for five depth ratios conditions and three vegetation densities conditions. The results show that the correction coefficients of energy and momentum between the main channel and the floodplain are obviously different due to the non-unifomity of velocity distribution. The values are all greater than one. When the flow depth ratio increases, the velocity distribution of the compound section tends to be uniform. The range of the energy correction coefficient and momentum correction coefficient are 1.07~1.19 and 1.03~1.07, respectively. In addition, with the increase of vegetation density, the velocity difference between the main channel and the floodplain increases, and the correction coefficients of energy and momentum of the section increase accordingly. The range of the energy correction coefficient and momentum correction coefficient are 1.09~1.59 and 1.04~1.21, respectively. Finally, through regression analysis, it is found that there is a linear relationship between energy correction coefficient and momentum correction coefficient, and this formula can predict the value of energy correction coefficient and momentum correction coefficient under the same condition.
-
表 1 计算工况
Table 1. Computation conditions
工况 滩槽水深比 水深 植被密度阻力系数 /m−1 雷诺数 弗劳德数 网格数量 主槽/m 滩地/m 主槽 滩地 1 0.10 0.08 0.008 0 0 31 653 0.76 160×100×80 160×100×10 2 0.17 0.08 0.013 6 0 43 843 0.76 160×100×80 160×100×15 3 0.25 0.08 0.020 0 0 47 779 0.65 160×100×80 160×100×20 4 0.50 0.08 0.040 0 0 67 189 0.56 160×100×80 160×100×40 5 0.75 0.08 0.060 0 0 79 793 0.48 160×100×80 160×100×60 6 0.50 0.08 0.040 0 0.28 67 112 0.56 160×100×80 160×100×40 7 0.50 0.08 0.040 0 1.13 67 112 0.56 160×100×80 160×100×40 8 0.50 0.08 0.040 0 2.26 67 112 0.56 160×100×80 160×100×40 -
[1] LUO E C R. Energy and momentum coefficients in straight symmetric compound-channel flows[J]. International Journal of Hydraulic Engineering, 2012, 1(3): 15-20. [2] MOHANTY P K, DASH S S, KHATUA K K, et al. Energy and momentum coefficients for wide compound channels[J]. River Basin Management VII, 2013, 172(11): 87-97. [3] KESHAVARZI A, HAMIDIFAR H. Kinetic energy and momentum correction coefficients in compound open channels[J]. Natural Hazards, 2018, 92(3): 1859-1869. doi: 10.1007/s11069-018-3285-0 [4] PANTELAKIS D, HATZIGIANNAKIS E, DOULGERIS C, et al. Calculation of the energy and the momentum coefficients based on measurements in Greek rivers[J]. Modeling Earth Systems and Environment, 2020, 6(2): 1163-1175. doi: 10.1007/s40808-020-00748-3 [5] PARSAIE A. Analyzing the distribution of momentum and energy coefficients in compound open channel[J]. Modeling Earth Systems and Environment, 2016, 2(1): 15. doi: 10.1007/s40808-015-0054-x [6] 陈界仁, 陈国祥. 复杂断面水力计算中的动量校正系数[J]. 河海大学学报,1996,24(4):84-89 CHEN Jieren, CHEN Guoxiang. The momentum correction coefficient in hydraulic computation with complex river channel[J]. Journal of Hohai University, 1996, 24(4): 84-89. (in Chinese) [7] 杨克君, 刘兴年, 曹叔尤, 等. 植被作用下的复式河槽漫滩水流紊动特性[J]. 水利学报,2005,36(10):1263-1268 doi: 10.3321/j.issn:0559-9350.2005.10.022 YANG Kejun, LIU Xingnian, CAO Shuyou, et al. Turbulence characteristics of overbank flow in compound river channel with vegetated floodplain[J]. Journal of Hydraulic Engineering, 2005, 36(10): 1263-1268. (in Chinese) doi: 10.3321/j.issn:0559-9350.2005.10.022 [8] YANG K J, CAO S Y, KNIGHT D W. Flow patterns in compound channels with vegetated floodplains[J]. Journal of Hydraulic Engineering, 2007, 133(2): 148-159. doi: 10.1061/(ASCE)0733-9429(2007)133:2(148) [9] HAMIDIFAR H, OMID M H, KESHAVARZI A. Kinetic energy and momentum correction coefficients in straight compound channels with vegetated floodplain[J]. Journal of Hydrology, 2016, 537: 10-17. doi: 10.1016/j.jhydrol.2016.03.024 [10] KUBRAK E, KUBRAK J, KICZKO A. Experimental investigation of kinetic energy and momentum coefficients in regular channels with stiff and flexible elements simulating submerged vegetation[J]. Acta Geophysica, 2015, 63(5): 1405-1422. doi: 10.1515/acgeo-2015-0053 [11] 陈正兵, 江春波. 滩地植被对河道水流影响[J]. 清华大学学报(自然科学版),2012,52(6):804-808 CHEN Zhengbing, JIANG Chunbo. Effect of floodplain vegetation on river hydrodynamics[J]. Journal of Tsinghua University (Science & Technology), 2012, 52(6): 804-808. (in Chinese) [12] 闫静, 唐洪武, 田志军, 等. 植物对明渠流速分布影响的试验研究[J]. 水利水运工程学报,2011(4):138-142 doi: 10.3969/j.issn.1009-640X.2011.04.022 YAN Jing, TANG Hongwu, TIAN Zhijun, et al. Experimental study on the influence of vegetation on the velocity distribution of open channel flows[J]. Hydro-Science and Engineering, 2011(4): 138-142. (in Chinese) doi: 10.3969/j.issn.1009-640X.2011.04.022 [13] STOESSER T, SALVADOR G P, RODI W, et al. Large eddy simulation of turbulent flow through submerged vegetation[J]. Transport in Porous Media, 2009, 78(3): 347-365. doi: 10.1007/s11242-009-9371-8 [14] NEARY V S. Numerical solution of fully developed flow with vegetative resistance[J]. Journal of Engineering Mechanics, 2003, 129(5): 558-563. doi: 10.1061/(ASCE)0733-9399(2003)129:5(558) [15] DUNN C, LOPEZ F, GARCIA M. Mean flow and turbulence in a laboratory channel with simulated vegetation[R]. Illinois: University of Illinois at Urbana-Champaign, 1996. [16] TOMINAGA A, NEZU I, EZAKI K, et al. Three-dimensional turbulent structure in straight open channel flows[J]. Journal of Hydraulic Research, 1989, 27(1): 149-173. doi: 10.1080/00221688909499249 [17] 曾诚, 丁少伟, 周婕, 等. 基于WMLES方法的复式断面明渠三维紊流数值模拟[J]. 水利水电科技进展,2020,40(6):17-22 ZENG Cheng, DING Shaowei, ZHOU Jie, et al. A three-dimensional numerical simulation based on WMLES for compound open-channel turbulent flows[J]. Advances in Science and Technology of Water Resources, 2020, 40(6): 17-22. (in Chinese) [18] 丁少伟. 复式断面明渠流水动力特性大涡模拟研究[D]. 南京: 河海大学, 2021. DING Shaowei. Investigation on hydrodynamic characteristics of compound open-channel flows using large eddy simulation[D]. Nanjing: Hohai University, 2021. (in Chinese) [19] 梁爱国, 槐文信. 复式断面明渠二次流的数值模拟[J]. 应用基础与工程科学学报,2008,16(2):296-304 doi: 10.3969/j.issn.1005-0930.2008.02.018 LIANG Aiguo, HUAI Wenxin. The predictions of the secondary currents in compound open-channel flows[J]. Journal of Basic Science and Engineering, 2008, 16(2): 296-304. (in Chinese) doi: 10.3969/j.issn.1005-0930.2008.02.018 -