留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

协整和集对分析法在降雨资料短缺地区的插补移用

王秀杰 齐喜玲 滕振敏 李丹丹

王秀杰,齐喜玲,滕振敏,等. 协整和集对分析法在降雨资料短缺地区的插补移用[J]. 水利水运工程学报,2022. doi:  10.12170/20210721001
引用本文: 王秀杰,齐喜玲,滕振敏,等. 协整和集对分析法在降雨资料短缺地区的插补移用[J]. 水利水运工程学报,2022. doi:  10.12170/20210721001
(WANG Xiujie, QI Xiling, TENG Zhenmin, et al. Research on interpolation and transfer of cointegration and set pair analysis in rainfall data shortage areas[J]. Hydro-Science and Engineering, 2022(in Chinese)) doi:  10.12170/20210721001
Citation: (WANG Xiujie, QI Xiling, TENG Zhenmin, et al. Research on interpolation and transfer of cointegration and set pair analysis in rainfall data shortage areas[J]. Hydro-Science and Engineering, 2022(in Chinese)) doi:  10.12170/20210721001

协整和集对分析法在降雨资料短缺地区的插补移用

doi: 10.12170/20210721001
基金项目: 国家重点研发计划资助项目(2018YFC1508403);天津大学自主创新基金资助项目(2020XZC-0002)
详细信息
    作者简介:

    王秀杰(1973—),女,辽宁葫芦岛人,副教授,博士,主要从事防洪减灾方面研究。E-mail:wangxiujie@tju.edu.cn

    通讯作者:

    齐喜玲(E-mail:18919108046@163.com

  • 中图分类号: P338

Research on interpolation and transfer of cointegration and set pair analysis in rainfall data shortage areas

  • 摘要: 针对中小流域降雨资料短缺,洪水精确预报难度大的问题,提出利用线性协整和集对分析(SPA)方法分别对台风雨和非台风雨下的观测降雨数据进行插补移用,以驼英水库为例,进行洪水预报研究。研究得出:(1)基于台风雨协整计算结果发现雨量站之间存在协整关系,协整模拟结果与实测降雨的纳什系数均在0.85以上,相关系数达到0.90,主雨峰和场次降雨误差均较小,说明协整理论可用于降雨资料短缺时的数据插补。(2)非台风雨降雨序列经补充集合经验模态分解(CEEMD)和集对分析(SPA),根据综合联系度拟定数据移用最优方案,显著提高了降雨数据移用的有效性及准确性,提高了洪水预报精度。该方法可为其他同时存在台风雨和非台风雨地区降雨资料的插补移用提供新思路。
  • 图  1  驮英水库上游流域示意

    Figure  1.  Schematic diagram of the upper reaches of Tuoying Reservoir

    图  2  叫弄站协整计算结果与实测降雨对比

    Figure  2.  Comparison of co-integration calculation results and measured rainfall at Jiaonong Station

    图  3  叫弄站协整计算结果与实测降雨对比

    Figure  3.  Comparison of co-integration calculation results and measured rainfall at Jiaonong Station

    图  4  各雨量站场次降雨数据对比

    Figure  4.  Comparison of rainfall data of each rainfall station

    图  5  CEEMD分解结果

    Figure  5.  CEEMD decomposition results

    图  6  洪水预报模拟结果对比

    Figure  6.  Comparison of flood prediction simulation results

    表  1  板固站及叫弄站降雨序列ADF检验结果

    Table  1.   ADF test results of rainfall series at Bangu Station and Jiaonong Station

    数据模型ADF临界值AIC准则SC准则检验结果
    (有无单位根)
    显著水平1%显著水平5%显著水平10%
    原数据 有截距有趋势
    1.78/−1.99 −4.47/−4.44 −3.65/−3.63 −3.26/−3.26 7.46/6.42 7.66/6.56 有/有
    有截距无趋势
    1.64/−1.75 −3.77/−3.77 −3.01/−3.00 −2.64/−2.64 7.04/6.43 7.41/6.53 有/有
    无截距无趋势
    1.12/−1.14 −2.67/−2.67 −1.96/−1.96 −1.61/−1.61 7.29/6.42 7.34/6.47 有/有
    一阶差分 有截距有趋势
    4.58/−5.80 −4.47/−4.47 −3.65/−3.65 −3.26/−3.26 7.53/6.57 7.68/6.72 无/无
    有截距无趋势 4.48/−5.56 −3.79/−3.79 −3.01/−3.01 −2.65/−2.65 7.49/6.56 7.59/6.66 无/无
    无截距无趋势 4.60/−5.70 −2.68/−2.68 −1.96/−1.96 −1.61/−1.61 7.40/6.47 7.45/6.52 无/无
      注:“/”前为板固站数据,“/”后为叫弄站数据。
    下载: 导出CSV

    表  2  残差序列ADF检验结果

    Table  2.   ADF test results of residual sequence

    数据模型ADF临界值AIC准则SC
    准则
    检验结果
    显著水平 1%显著水平5%显著水平10%
    原数据有截距有趋势−1.49−4.89−3.83−3.363.824.34接受原假设
    有截距无趋势−2.50−3.81−3.02−2.655.445.64接受原假设
    无截距无趋势−4.43−2.67−1.96−1.615.055.10拒绝原假设
    下载: 导出CSV

    表  3  IMF分量集对分析结果

    Table  3.   Analysis results of IMF component set pairs

    集对abc$ \mu $平均
    那驮-九特 0.500 0.464 0.036 0.696 0.732
    0.500 0.393 0.107 0.590
    0.393 0.607 0. 0.697
    0.893 0.107 0 0.947
    那驮-板固 0.714 0.286 0 0.857 0.893
    0.786 0.214 0 0.893
    0.929 0.071 0 0.964
    0.714 0.286 0 0.857
    下载: 导出CSV
  • [1] YAN L, CHEN C W, HANG T T, et al. A stream prediction model based on attention-LSTM[J]. Earth Science Informatics, 2021, 14(2): 723-733. doi:  10.1007/s12145-021-00571-z
    [2] KHAN I, LEI H D, SHAH A A, et al. Climate change impact assessment, flood management, and mitigation strategies in Pakistan for sustainable future[J]. Environmental Science and Pollution Research, 2021, 28(23): 29720-29731. doi:  10.1007/s11356-021-12801-4
    [3] LIU Z J, GUO S L, ZHANG H G, et al. Comparative study of three updating procedures for real-time flood forecasting[J]. Water Resources Management, 2016, 30(7): 2111-2126. doi:  10.1007/s11269-016-1275-0
    [4] 王秀杰, 李丹丹, 苑希民, 等. 基于参数分级优化的水文气象耦合预报研究[J]. 天津大学学报(自然科学与工程技术版),2021,54(3):279-288

    WANG Xiujie, LI Dandan, YUAN Ximin, et al. Coupled hydrometeorology forecasting based on hierarchical optimization of parameters[J]. Journal of Tianjin University (Science and Technology), 2021, 54(3): 279-288. (in Chinese)
    [5] LI Z L, ZHANG X L, ZHU R, et al. Integrating data-to-data correlation into inverse distance weighting[J]. Computational Geosciences, 2020, 24(1): 203-216. doi:  10.1007/s10596-019-09913-9
    [6] 熊立华, 刘烁楠, 熊斌, 等. 考虑植被和人类活动影响的水文模型参数时变特征分析[J]. 水科学进展,2018,29(5):625-635

    XIONG Lihua, LIU Shuonan, XIONG Bin, et al. Impacts of vegetation and human activities on temporal variation of the parameters in a monthly water balance model[J]. Advances in Water Science, 2018, 29(5): 625-635. (in Chinese)
    [7] DE MORAES CORDEIRO A L, BLANCO C J C. Assessment of satellite products for filling rainfall data gaps in the Amazon region[J]. Natural Resource Modeling, 2021, 34(2): e12298.
    [8] 申睿. 山东省山丘区缺资料小流域暴雨洪水计算研究[D]. 济南: 山东大学, 2016.

    SHEN Rui. Research of storm and flood calculation in small ungauged basins at hilly areas of Shandong Province[D]. Jinan: Shandong University, 2016. (in Chinese)
    [9] 陈华, 盛晟, 夏润亮, 等. 基于矩阵分解的降水时空插值方法[J]. 河海大学学报(自然科学版),2021,49(1):35-41

    CHEN Hua, SHENG Sheng, XIA Runliang, et al. Spatiotemporal interpolation method of rainfall based on matrix decomposition[J]. Journal of Hohai University (Natural Sciences), 2021, 49(1): 35-41. (in Chinese)
    [10] HUANG H P, LIANG Z M, LI B Q, et al. A new spatial precipitation interpolation method based on the information diffusion principle[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(3): 765-777. doi:  10.1007/s00477-019-01658-2
    [11] RATA M, DOUAOUI A, LARID M, et al. Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria[J]. Theoretical and Applied Climatology, 2020, 141(3/4): 1009-1024.
    [12] 吴孝情, 陈晓宏, 唐亦汉, 等. 珠江流域非平稳性降雨极值时空变化特征及其成因[J]. 水利学报,2015,46(9):1055-1063

    WU Xiaoqing, CHEN Xiaohong, TANG Yihan, et al. Spatiotemporal variations and the causes of non-stationary extreme precipitation in the Pearl River Basin[J]. Journal of Hydraulic Engineering, 2015, 46(9): 1055-1063. (in Chinese)
    [13] ENGLE R F, GRANGER C W J. Co-integration and error correction: representation, estimation, and testing[J]. Econometrica, 1987, 55(2): 251. doi:  10.2307/1913236
    [14] 余威. 气象相似性网络构建及缺失气象要素数据的插补[D]. 重庆: 西南大学, 2015: 58.

    YU Wei. Construct meteorological similarity network and missing meteorological elements data interpolation[D]. Chongqing: Southwest University, 2015: 58. (in Chinese)
    [15] 金倩芳. 无资料地区短期水文预报方法研究与应用[D]. 武汉: 华中科技大学, 2019.

    JIN Qianfang. Research and application on the short-term hydrological forecasting methods in the ungauged basins[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
    [16] ZIARH G F, SHAHID S, ISMAIL T B, et al. Correcting bias of satellite rainfall data using physical empirical model[J]. Atmospheric Research, 2021, 251: 105430. doi:  10.1016/j.atmosres.2020.105430
    [17] SHARIFI E, SAGHAFIAN B, STEINACKER R. Downscaling satellite precipitation estimates with multiple linear regression, artificial neural networks, and spline interpolation techniques[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(2): 789-805. doi:  10.1029/2018JD028795
    [18] 彭安帮, 刘九夫, 马涛, 等. 辽宁省资料短缺地区中小河流洪水预报方法[J]. 水力发电学报,2020,39(8):79-89 doi:  10.11660/slfdxb.20200808

    PENG Anbang, LIU Jiufu, MA Tao, et al. Flood forecasting method for medium-and small-size rivers short of hydrological data in Liaoning Province[J]. Journal of Hydroelectric Engineering, 2020, 39(8): 79-89. (in Chinese) doi:  10.11660/slfdxb.20200808
    [19] 李琼, 陈红兵, 彭薇, 等. 基于降雨强度及降雨中心的瞬时单位线参数综合优化[J]. 三峡大学学报(自然科学版),2019,41(4):6-9, 15

    LI Qiong, CHEN Hongbin, PENG Wei, et al. Comprehensive optimization of instantaneous unit hydrograph based on rainfall intensity and center changes[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(4): 6-9, 15. (in Chinese)
    [20] 覃武, 赵金彪, 黄荣成, 等. 台风“山竹”登陆结构变化及造成广西强降水异常分布的成因分析[J]. 热带气象学报,2019,35(5):587-595

    QIN Wu, ZHAO Jinbiao, HUANG Rongcheng, et al. Cause analysis on the structural change of typhoon mangkhut during its landing and the abnormal distribution of heavy precipitation in Guangxi[J]. Journal of Tropical Meteorology, 2019, 35(5): 587-595. (in Chinese)
    [21] LIU B Q, XU M, WANG J, et al. Evaluation of China’s marine economic growth quality based on set pair analysis[J]. Marine Policy, 2021, 126: 104405. doi:  10.1016/j.marpol.2021.104405
    [22] ZHANG Q Y, XU P P, CHEN J, et al. Evaluation of groundwater quality using an integrated approach of set pair analysis and variable fuzzy improved model with binary semantic analysis: a case study in Jiaokou Irrigation District, east of Guanzhong Basin, China[J]. Science of the Total Environment, 2021, 767: 145247. doi:  10.1016/j.scitotenv.2021.145247
    [23] LIU X P, XIA C F, CHEN Z W, et al. A new framework for rainfall downscaling based on EEMD and an improved fractal interpolation algorithm[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(8): 1147-1173. doi:  10.1007/s00477-020-01823-y
    [24] 李秉晨, 于惠钧, 丁华轩, 等. 基于CEEMD和LSTM-ARIMA的短期风速预测[J]. 中国测试, 2022, 48(2): 163-168.

    LI Bingchen, YU Huijun, DING Huaxuan, et al. Short-term wind speed prediction based on CEEMD and LSTM-ARIMA[J]. China Measurement & Test, 2022, 48(2): 163-168. (in Chinese)
    [25] ZHENG H M, DANG C L, GU S M, et al. A quantified self-adaptive filtering method: effective IMFs selection based on CEEMD[J]. Measurement Science and Technology, 2018, 29(8): 085701-1-085701-12. doi:  10.1088/1361-6501/aac990
    [26] 黄旭升. 基于CEEMD信号处理技术的锚杆锚固质量无损检测方法研究[D]. 昆明: 昆明理工大学, 2019.

    HUANG Xusheng. Research on non-destructive testing method of bolt anchorage quality based on CEEMD signal processing technology[D]. Kunming: Kunming University of Science and Technology, 2019. (in Chinese)
    [27] 任长秋. 农产品加工业FDI技术溢出时间效应及影响因素研究[D]. 重庆: 西南大学, 2020.

    REN Changqiu. The timing spillover effect of FDI and influencing factors in China’s agruicultrual product processing industry[D]. Chongqing: Southwest University, 2020. (in Chinese)
    [28] 王亨力, 倪深海. 基于AHP-集对分析的矿井水资源利用风险评估[J]. 水利水运工程学报,2021(3):126-135 doi:  10.12170/0201120002

    WANG Hengli, NI Shenhai. Risk assessment of mine water resource utilization based on analytic hierarchy process and set pair analysis[J]. Hydro-Science and Engineering, 2021(3): 126-135. (in Chinese) doi:  10.12170/0201120002
    [29] 李小朦. 基于CEEMD和LRSD-TNNSR的柔性薄壁轴承故障特征提取[D]. 广州: 华南理工大学, 2020.

    LI Xiaomeng. Fault feature extraction of flexible thin-walled bearings based on CEEMD and LRSD-TNNSR[D]. Guangzhou: South China University of Technology, 2020. (in Chinese)
    [30] ZHANG Y A, YAN B B, AASMA M. A novel deep learning framework: prediction and analysis of financial time series using CEEMD and LSTM[J]. Expert Systems With Applications, 2020, 159: 113609. doi:  10.1016/j.eswa.2020.113609
    [31] AUERSWALD K, HAIDER J. Runoff curve numbers for small grain under German cropping conditions[J]. Journal of Environmental Management, 1996, 47(3): 223-228. doi:  10.1006/jema.1996.0048
    [32] AL-GHOBARI H, DEWIDAR A Z. Integrating GIS-based MCDA techniques and the SCS-CN method for identifying potential zones for rainwater harvesting in a semi-arid area[J]. Water, 2021, 13(5): 704. doi:  10.3390/w13050704
    [33] 徐赞, 吴磊, 吴永祥, 等. SCS-CN模型改进及其径流预测[J]. 水利水运工程学报,2018(3):32-39

    XU Zan, WU Lei, WU Yongxiang, et al. Improvement and runoff prediction of SCS-CN model[J]. Hydro-Science and Engineering, 2018(3): 32-39. (in Chinese)
    [34] 蒙海波. 广西中南部玉林地区传统围合式建筑的天井空间微气候调节效果研究[D]. 南宁: 广西大学, 2020.

    MENG Haibo. Study on the effect of microclimate regulation on traditional enclosed buildings in Yulin area of south-central Guangxi[D]. Nanning: Guangxi University, 2020. (in Chinese)
  • [1] 王昊, 江文员, 刘益民, 李淑贤, 刁艳芳.  基于TIGGE多模式的6 h降雨预报精度对比分析 . 水利水运工程学报, doi: 10.12170/20211130001
    [2] 葛巍, 秦玉盼, 李宗坤, 王特, 焦余铁, 王建有, 赵凤遥.  基于集对分析与三角模糊数耦合的溃坝环境影响评价 . 水利水运工程学报, doi: 10.12170/20210619001
    [3] 金菊良, 赵行玥, 崔毅, 周玉良, 陈梦璐, 宁少尉.  半偏减法集对势在区域旱灾风险评估中的应用 . 水利水运工程学报, doi: 10.12170/20200901005
    [4] 王亨力, 倪深海.  基于AHP-集对分析的矿井水资源利用风险评估 . 水利水运工程学报, doi: 10.12170/0201120002
    [5] 刘浅奎, 王文圣, 余思怡, 王宁.  熵权模糊集对分析法在溪洛渡水库汛期分期中的应用 . 水利水运工程学报, doi: 10.12170/20191205001
    [6] 方成杰, 钱德玲, 徐士彬, 姚兰飞, 刘杰.  基于联系期望的泥石流易发性评价模型 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2017.02.008
    [7] 李为,苗喆.  察汗乌苏面板坝监测资料分析 . 水利水运工程学报,
    [8] 汪哲荪,袁潇晨,金菊良,王宗志.  基于集对分析的年径流自组织预测模型 . 水利水运工程学报,
    [9] 王国利,霍家平,陈生水.  云龙水库初蓄期大坝渗流观测资料分析 . 水利水运工程学报,
    [10] 晋良海,梁川.  基于集对理论标段协调差啮合的施工系统稳定性分析 . 水利水运工程学报,
    [11] 耿艳芬,王志力.  基于径向基函数神经网络的河网洪水泥沙预报 . 水利水运工程学报,
    [12] 陈鸣,吴永祥,陆卫鲜,朱佳,杨红秀.  InfoWorks RS、FloodWorks软件及应用 . 水利水运工程学报,
    [13] 刘玉峰,黄勇,李忠辉,王消川.  吉利河水库大坝渗流观测资料分析 . 水利水运工程学报,
    [14] 葛从兵,李雷,谢晓华.  土石坝安全监测资料分析评价系统 . 水利水运工程学报,
    [15] 郦能惠,朱家谟,李锡龄,钱诗华.  克孜尔水库土石坝变形观测与资料分析 . 水利水运工程学报,
    [16] 李国英,沈珠江,赵魁芝.  梅溪水库面板堆石坝原型观测资料反馈分析及大坝变形预报模型 . 水利水运工程学报,
    [17] 王红川,左其华,潘军宁.  海洋资料中异常值的分析和判别 . 水利水运工程学报,
    [18] 吴良骥.  渗流场中点预报模型及其可靠度分析 . 水利水运工程学报,
    [19] 王韦,朱满培.  黄材土坝渗流资料分析新方法 . 水利水运工程学报,
    [20] 王韦.  土坝渗流观测资料的分析及应用 . 水利水运工程学报,
  • 加载中
图(6) / 表 (3)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  30
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 网络出版日期:  2022-08-30

/

返回文章
返回