留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云水资源利用对北三河流域农田灌溉需水影响分析

田雪莹 王高旭 吴永祥 吴巍 刘涛

田雪莹,王高旭,吴永祥,等. 云水资源利用对北三河流域农田灌溉需水影响分析[J]. 水利水运工程学报,2022(3):23-33. doi:  10.12170/20210727001
引用本文: 田雪莹,王高旭,吴永祥,等. 云水资源利用对北三河流域农田灌溉需水影响分析[J]. 水利水运工程学报,2022(3):23-33. doi:  10.12170/20210727001
(TIAN Xueying, WANG Gaoxu, WU Yongxiang, et al. Impact analysis of cloud water resources utilization on irrigation water demand in North Three Rivers Basin[J]. Hydro-Science and Engineering, 2022(3): 23-33. (in Chinese)) doi:  10.12170/20210727001
Citation: (TIAN Xueying, WANG Gaoxu, WU Yongxiang, et al. Impact analysis of cloud water resources utilization on irrigation water demand in North Three Rivers Basin[J]. Hydro-Science and Engineering, 2022(3): 23-33. (in Chinese)) doi:  10.12170/20210727001

云水资源利用对北三河流域农田灌溉需水影响分析

doi: 10.12170/20210727001
基金项目: 国家重点研发计划资助项目(2016YFA0601703,2016YFC0401005);国家自然科学基金资助项目(42075191,52009080)
详细信息
    作者简介:

    田雪莹(1996—),女,河南洛阳人,硕士研究生,主要从事水资源规划与管理研究。E-mail:xytian@nhri.cn

    通讯作者:

    王高旭(E-mail:gxwang@nhri.cn

  • 中图分类号: P481;S274.3

Impact analysis of cloud water resources utilization on irrigation water demand in North Three Rivers Basin

  • 摘要: 为探究不同降水频率、不同增雨情景下的农田灌溉用水差异,采用Penman-Monteith公式构建农田灌溉需水预测模型,研究北三河流域11个计算分区在95%、75%、50%等3种降水频率,及未增雨、增雨5%、增雨10%、增雨15%等4种情景下的灌溉需水变化。研究结果表明:北三河流域云水资源丰富且降水效率不高,故存在巨大的开发潜力;4—9月作物需水量较大;作物种植结构与种植面积影响农田灌溉需水量;北三河流域农田灌溉需水量夏季最多,春秋次之,冬季最少。云水资源与农田灌溉结合应用,同时优化作物种植结构,效益可观;枯水年、特枯水年夏季适宜对北三河全流域增雨,春秋两季适宜对河北潮白河山区、河北蓟运河山区、唐山平原区、天津平原区等局部地区增雨。云水资源的利用为灌溉用水提供了新的来源渠道,同时也为水资源的优化配置提供了新思路。
  • 图  1  北三河流域分布

    Figure  1.  Distribution of the North Three Rivers Basin

    图  2  未增雨时北三河流域降水量

    Figure  2.  Precipitation in North Three Rivers Basin without precipitation enhancement

    图  3  北三河流域2000—2017年云水资源多年平均季节分布

    Figure  3.  Annual average distribution of cloud water resources in North Three Rivers Basin from 2000 to 2017

    图  4  北三河流域2000—2017年水凝物降水效率多年平均季节分布

    Figure  4.  Annual average distribution of precipitation efficiency of hydrometeor in North Three Rivers Basin from 2000 to 2017

    图  5  北三河流域未增雨时农田灌溉需水分布

    Figure  5.  Distribution of irrigation water shortage in North Three Rivers Basin without precipitation enhancement

    图  6  未增雨情景下北三河流域在各降水频率下的农田灌溉需水

    Figure  6.  Irrigation water requirement of North Three Rivers Basin under different precipitation frequencies without precipitation enhancement

    图  7  不同降水频率下北三河流域在各增雨情景下的农田灌溉需水变量

    Figure  7.  Irrigation water requirement’s change of the North Three Rivers Basin under different rainfall scenarios with different precipitation frequencies

    表  1  北三河流域行政分区

    Table  1.   Administrative division of the North Three Rivers Basin

    序号计算单元涉及市单元面积/ha
    1 北京潮白河山区 北京市 478 347
    2 北运河山区 北京市 103 805
    3 北京蓟运河山区 北京市 67 958
    4 北京平原区 北京市 478 432
    5 天津蓟运河山区 天津市 74 706
    6 天津平原区 天津市 529 447
    7 河北潮白河山区 承德市、张家口市 1 150 416
    8 河北蓟运河山区 承德市、唐山市 266 269
    9 唐山平原区 唐山市 244 015
    10 廊坊东平原区 廊坊市 126 394
    11 廊坊市区 廊坊市 37 913
    下载: 导出CSV

    表  2  各计算分区主要农作物面积

    Table  2.   Area of main crops in each calculation region 单位:ha

    计算分区稻谷春小麦冬小麦莜麦玉米谷子高粱大豆马铃薯花生棉花大白菜瓜类
    北京潮白河山区 58 29 6 082 22 330 410 59 1 212 410 618 29 15 885 1 523
    北运河山区 13 6 1 320 4 846 89 13 263 89 134 6 3 447 331
    北京蓟运河山区 8 4 864 3 172 58 8 172 58 88 4 2 257 216
    北京平原区 58 29 6 083 22 334 410 59 1 212 410 618 29 15 888 1 523
    天津蓟运河山区 1 013 764 6 429 14 145 72 145 412 66 86 1 241 5 670
    天津平原区 9 810 5 672 45 559 103 909 513 1 027 2 923 467 612 15 573 41 028 1 125
    河北潮白河山区 221 6 740 8 893 35 544 6 288 95 3 789 11 914 6 071 26 078 92
    河北蓟运河山区 147 12 358 40 773 589 157 1 843 1 223 12 558 257 12 890 472
    唐山平原区 1 957 6 680 36 411 83 589 47 39 1 317 5 524 8 683 4 139 52 441 1 758
    廊坊东平原区 25 028 41 586 71 204 2 589 1 189 194 220 29 564 747
    廊坊市区 2 021 8 962 21 61 777 357 1 535 2 259 5 749 1 374
    下载: 导出CSV

    表  3  各计算分区逐月作物需水量

    Table  3.   Monthly crop water requirement for each calculation region 单位:mm

    月份北京潮白
    河山区
    北运河
    山区
    北京蓟运
    河山区
    北京平
    原区
    天津蓟运
    河山区
    天津平
    原区
    河北潮白
    河山区
    河北蓟运
    河山区
    唐山平
    原区
    廊坊东平
    原区
    廊坊
    市区
    1 2 2 2 2 3 3 0 2 2 4 1
    2 2 3 2 3 4 4 0 3 3 5 2
    3 9 10 9 10 17 17 0 11 14 20 7
    4 20 21 20 20 32 33 6 26 29 36 22
    5 30 31 30 31 46 51 29 43 44 48 47
    6 34 36 36 37 44 52 62 60 45 32 63
    7 53 54 57 56 68 72 93 91 63 49 74
    8 91 98 99 103 100 103 109 106 92 91 102
    9 64 66 71 72 66 68 51 62 64 64 66
    10 25 27 25 26 16 17 20 12 21 24 22
    11 3 3 4 4 2 2 3 2 3 3 3
    12 0 0 0 0 0 0 0 0 0 0 0
    合计 335 351 355 364 397 422 374 417 379 376 408
    下载: 导出CSV

    表  4  不同降水频率下增雨后北三河流域农田灌溉需水减少量

    Table  4.   Reduction of irrigation water demand in North Three Rivers Basin after precipitation enhancement

    增雨情景农田灌溉需水量/万m³农田灌溉需水减少量/万m³农田灌溉需水减少比例/%
    95%75%50%95%75%50%95%75%50%
    增雨5% 273 831 260 557 256 670 886 936 971 0.41 0.36 0.38
    增雨10% 272 986 259 662 255 764 1 731 1 831 1 877 0.63 0.70 0.73
    增雨15% 272 151 258 823 254 902 2 566 2 670 2 739 0.93 1.02 1.06
    下载: 导出CSV

    表  5  云水资源利用下的北三河流域季节农田灌溉需水减少比例

    Table  5.   Proportion of seasonal irrigation water demand reduction in North Three Rivers Basin under the utilization of cloud water resources                  单位:%

    季节降水频率95%降水频率75%降水频率50%
    增雨5%增雨10%增雨15%增雨5%增雨10%增雨15%增雨5%增雨10%增雨15%
    春季 0.12 0.23 0.33 0.22 0.43 0.62 0.14 0.27 0.40
    夏季 0.44 0.98 1.42 0.51 1.14 1.62 0.54 1.21 1.73
    秋季 0.29 0.53 0.88 0.10 0.19 0.32 0.17 0.29 0.47
    冬季 0.01 0.03 0.04 0.12 0.26 0.37 0.06 0.13 0.18
    合计 0.41 0.36 0.38 0.63 0.70 0.73 0.93 1.02 1.06
    下载: 导出CSV
  • [1] 宋先松, 石培基, 金蓉. 中国水资源空间分布不均引发的供需矛盾分析[J]. 干旱区研究,2005,22(2):162-166. (SONG Xiansong, SHI Peiji, JIN Rong. Analysis on the contradiction between supply and demand of water resources in China owing to uneven regional distribution[J]. Arid Zone Research, 2005, 22(2): 162-166. (in Chinese)

    SONG Xiansong, SHI Peiji, JIN Rong. Analysis on the contradiction between supply and demand of water resources in China owing to uneven regional distribution[J]. Arid Zone Research, 2005, 22(2): 162-166. (in Chinese)
    [2] 刘晶, 鲍振鑫, 刘翠善, 等. 近20年中国水资源及用水量变化规律与成因分析[J]. 水利水运工程学报,2019(4):31-41. (LIU Jing, BAO Zhenxin, LIU Cuishan, et al. Change law and cause analysis of water resources and water consumption in China in past 20 years[J]. Hydro-Science and Engineering, 2019(4): 31-41. (in Chinese)

    LIU Jing, BAO Zhenxin, LIU Cuishan, et al. Change law and cause analysis of water resources and water consumption in China in past 20 years[J]. Hydro-Science and Engineering, 2019(4): 31-41. (in Chinese)
    [3] 赵勇, 翟家齐. 京津冀水资源安全保障技术研发集成与示范应用[J]. 中国环境管理,2017,9(4):113-114. (ZHAO Yong, ZHAI Jiaqi. Integration and demonstration application of water resource security technology in Beijing, Tianjin and Hebei[J]. Chinese Journal of Environmental Management, 2017, 9(4): 113-114. (in Chinese)

    ZHAO Yong, ZHAI Jiaqi. Integration and demonstration application of water resource security technology in Beijing, Tianjin and Hebei[J]. Chinese Journal of Environmental Management, 2017, 9(4): 113-114. (in Chinese)
    [4] ZHOU Y Q, CAI M, TAN C, et al. Quantifying the cloud water resource: basic concepts and characteristics[J]. Journal of Meteorological Research, 2020, 34(6): 1242-1255. doi:  10.1007/s13351-020-9125-7
    [5] 国家发展改革委, 中国气象局. 全国人工影响天气发展规划(2014—2020)[M]. 北京: 国家发展改革委, 中国气象局 , 2014.

    National Development and Reform Commission, China Meteorological Administration. National weather modification development program (2014-2020)[M]. Beijing: National Development and Reform Commission, China Meteorological Administration, 2014. (in Chinese)
    [6] 周毓荃, 蔡淼, 毛节泰, 等. 大气水循环和云水资源研究[C]∥第34届中国气象学会年会S10大气物理学与大气环境论文集. 郑州: 中国气象学会, 2017: 218-219.

    ZHOU Yuquan, CAI Miao, MAO Jietai, et al. Study on atmospheric water cycle and cloud water resources[C]∥Proceedings of the 34th Annual Meeting of the Chinese Meteorological Society S10 Atmospheric physics and atmospheric environment. Zhengzhou: Chinese Meteorological Society, 2017: 218-219. (in Chinese)
    [7] 封秋娟. 一次典型层状云降水物理特征的观测和数值模拟研究[D]. 南京: 南京信息工程大学, 2007.

    FENG Qiujuan. Observation and numerical simulation of physical mechanism for a typical stratiform precipitation[D]. Nanjing: Nanjing University of Information Science & Technology, 2007. (in Chinese)
    [8] VONNEGUT B. The nucleation of ice formation by silver iodide[J]. Journal of Applied Physics, 1947, 18(7): 593-595. doi:  10.1063/1.1697813
    [9] GRANT L O. Hypotheses for the climax wintertime orographic cloud seeding experiments[M]∥Precipitation Enhancement—A Scientific Challenge. Boston, MA: American Meteorological Society, 1986: 105-108.
    [10] 夏松亭. 现代人工影响天气的发展历史与启示[J]. 山东气象,2007,27(3):61-63. (XIA Songting. The development history and enlightenment of modern weather modification[J]. Journal of Shandong Meteorology, 2007, 27(3): 61-63. (in Chinese)

    XIA Songting. The development history and enlightenment of modern weather modification[J]. Journal of Shandong Meteorology, 2007, 27(3): 61-63. (in Chinese)
    [11] CAI M, ZHOU Y Q, LIU J Z, et al. Quantifying the cloud water resource: methods based on observational diagnosis and cloud model simulation[J]. Journal of Meteorological Research, 2020, 34(6): 1256-1270. doi:  10.1007/s13351-020-9126-6
    [12] 马灵玲, 占车生, 唐伶俐, 等. 作物需水量研究进展的回顾与展望[J]. 干旱区地理,2005,28(4):531-537. (MA Lingling, ZHAN Chesheng, TANG Lingli, et al. Review and prospect on the study progress in crop water requirements[J]. Arid Land Geography, 2005, 28(4): 531-537. (in Chinese) doi:  10.3321/j.issn:1000-6060.2005.04.022

    MA Lingling, ZHAN Chesheng, TANG Lingli, et al. Review and prospect on the study progress in crop water requirements[J]. Arid Land Geography, 2005, 28(4): 531-537. (in Chinese) doi:  10.3321/j.issn:1000-6060.2005.04.022
    [13] PENMAN H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society a Mathematical Physical and Engineering Sciences, 1948, 193(1032): 120-145.
    [14] 谢森传. 农田水分循环中的蒸发蒸腾计算[J]. 清华大学学报(自然科学版),1998,38(1):107-110. (XIE Senchuan. Estimation of evaporation and transpiration of farmland water cycling[J]. Journal of Tsinghua University (Science and Technology), 1998, 38(1): 107-110. (in Chinese) doi:  10.3321/j.issn:1000-0054.1998.01.026

    XIE Senchuan. Estimation of evaporation and transpiration of farmland water cycling[J]. Journal of Tsinghua University (Science and Technology), 1998, 38(1): 107-110. (in Chinese) doi:  10.3321/j.issn:1000-0054.1998.01.026
    [15] ZHANG Q, SUN P, SINGH V P, et al. Spatial-temporal precipitation changes (1956—2000) and their implications for agriculture in China[J]. Global and Planetary Change, 2012, 82/83: 86-95. doi:  10.1016/j.gloplacha.2011.12.001
    [16] 韩宇平, 王朋, 王富强. 气候变化下淮河区主要作物需水量变化特征[J]. 灌溉排水学报,2013,32(5):114-117. (HAN Yuping, WANG Peng, WANG Fuqiang. Variation characteristics on water requirement of main crops in Huaihe River with climatic changes[J]. Journal of Irrigation and Drainage, 2013, 32(5): 114-117. (in Chinese)

    HAN Yuping, WANG Peng, WANG Fuqiang. Variation characteristics on water requirement of main crops in Huaihe River with climatic changes[J]. Journal of Irrigation and Drainage, 2013, 32(5): 114-117. (in Chinese)
    [17] HUANG C Y, DUIKER S, DENG L J, et al. Influence of precipitation on maize yield in the Eastern United States[J]. Sustainability, 2015, 7(5): 5996-6010. doi:  10.3390/su7055996
    [18] 李志, 赵伟, 赵明, 等. 苏北地区不同水文年冬小麦需水量与灌水量分析[J]. 灌溉排水学报,2020,39(增刊1):17-20. (LI Zhi, ZHAO Wei, ZHAO Ming, et al. Crop water requirement and irrigation water demand for winter wheat under different hydrologic years in north of Jiangsu Province[J]. Journal of Irrigation and Drainage, 2020, 39(Suppl1): 17-20. (in Chinese)

    LI Zhi, ZHAO Wei, ZHAO Ming, et al. Crop water requirement and irrigation water demand for winter wheat under different hydrologic years in north of Jiangsu Province[J]. Journal of Irrigation and Drainage, 2020, 39(Suppl1): 17-20. (in Chinese)
    [19] 王子龙, 刘莹, 姜秋香, 等. 黑龙江省参考作物蒸散量变化及气象因子分析[J]. 水利水运工程学报,2021(2):46-56. (WANG Zilong, LIU Ying, JIANG Qiuxiang, et al. Analysis of reference crop evapotranspiration changes and meteorological factors in Heilongjiang Province[J]. Hydro-Science and Engineering, 2021(2): 46-56. (in Chinese)

    WANG Zilong, LIU Ying, JIANG Qiuxiang, et al. Analysis of reference crop evapotranspiration changes and meteorological factors in Heilongjiang Province[J]. Hydro-Science and Engineering, 2021(2): 46-56. (in Chinese)
    [20] 王静, 尉元明, 郭铌, 等. 祁连山空中云水资源开发利用效益预测与评估[J]. 自然资源学报,2007,22(3):463-470. (WANG Jing, WEI Yuanming, GUO Ni, et al. Beneficial prediction and assessment of cloud and air water resource exploitation over the Qilian Mountain[J]. Journal of Natural Resources, 2007, 22(3): 463-470. (in Chinese) doi:  10.3321/j.issn:1000-3037.2007.03.016

    WANG Jing, WEI Yuanming, GUO Ni, et al. Beneficial prediction and assessment of cloud and air water resource exploitation over the Qilian Mountain[J]. Journal of Natural Resources, 2007, 22(3): 463-470. (in Chinese) doi:  10.3321/j.issn:1000-3037.2007.03.016
    [21] 严小林, 张建云, 鲍振鑫, 等. 海河流域近500 年旱涝演变规律分析[J]. 水利水运工程学报,2020(4):17-23. (YAN Xiaolin, ZHANG Jianyun, BAO Zhenxin, et al. Evolution of drought and flood in the Haihe Rvier Basin for the last 500 years[J]. Hydro-Science and Engineering, 2020(4): 17-23. (in Chinese)

    YAN Xiaolin, ZHANG Jianyun, BAO Zhenxin, et al. Evolution of drought and flood in the Haihe Rvier Basin for the last 500 years[J]. Hydro-Science and Engineering, 2020(4): 17-23. (in Chinese)
    [22] 路洁, 刘晶, 刘明阳, 等. 近55年京津冀地区降水多尺度分析[J]. 水利水运工程学报,2020(6):23-31. (LU Jie, LIU Jing, LIU Mingyang, et al. Multi-scale analysis of precipitation in the Beijing-Tianjin-Hebei urban agglomeration in the past 55 years[J]. Hydro-Science and Engineering, 2020(6): 23-31. (in Chinese)

    LU Jie, LIU Jing, LIU Mingyang, et al. Multi-scale analysis of precipitation in the Beijing-Tianjin-Hebei urban agglomeration in the past 55 years[J]. Hydro-Science and Engineering, 2020(6): 23-31. (in Chinese)
    [23] ALLAN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[M]. Rome: FAO Irrig and Drain Paper, 1998: 56.
    [24] 李国豪. 中国土木建筑百科辞典[M]. 北京: 中国建筑工业出版社, 2006.

    LI Guohao. Encyclopedia of Chinese civil architecture[M]. Beijing: China Architecture & Building Press, 2006. (in Chinese)
    [25] 刘战东, 段爱旺, 肖俊夫, 等. 旱作物生育期有效降水量计算模式研究进展[J]. 灌溉排水学报,2007,26(3):27-30, 34. (LIU Zhandong, DUAN Aiwang, XIAO Junfu, et al. Research progress on calculation methods of effective rainfall in growing period on dry crop[J]. Journal of Irrigation and Drainage, 2007, 26(3): 27-30, 34. (in Chinese)

    LIU Zhandong, DUAN Aiwang, XIAO Junfu, et al. Research progress on calculation methods of effective rainfall in growing period on dry crop[J]. Journal of Irrigation and Drainage, 2007, 26(3): 27-30, 34. (in Chinese)
    [26] 曹永强, 李晓瑞. 河北省汛期降水集中度和集中期时空特征分析[J]. 水利水运工程学报,2018(4):96-105. (CAO Yongqiang, LI Xiaorui. Temporal and spatial characteristics of precipitation concentration degree and concentration period in flood season in Hebei Province[J]. Hydro-Science and Engineering, 2018(4): 96-105. (in Chinese)

    CAO Yongqiang, LI Xiaorui. Temporal and spatial characteristics of precipitation concentration degree and concentration period in flood season in Hebei Province[J]. Hydro-Science and Engineering, 2018(4): 96-105. (in Chinese)
  • [1] 秦天玲, 吕锡芝, 刘姗姗, 王建伟, 李晨昊, 冯贱明.  黄河流域水土资源联合配置技术框架 . 水利水运工程学报, 2022, (1): 28-36. doi: 10.12170/20211112003
    [2] 胡庆芳, 王银堂, 邓鹏鑫, 李伶杰, 王磊之, 云兆得.  对雨洪资源利用的再认识 . 水利水运工程学报, 2022, (): 1-12. doi: 10.12170/20220216004
    [3] 刘建华, 唐琦.  黄河流域水资源与产业升级互动关系研究 . 水利水运工程学报, 2022, (5): 31-39. doi: 10.12170/20210906002
    [4] 刘涛, 赵泽锦, 刘利成, 王高旭, 吴永祥, 吴巍, 田雪莹, 张妮娜.  北三河流域水资源供需平衡对降水变化的敏感性 . 水利水运工程学报, 2022, (5): 21-30. doi: 10.12170/20210926003
    [5] 王国庆, 乔翠平, 刘铭璐, 杜付然, 叶腾飞, 王婕.  气候变化下黄河流域未来水资源趋势分析 . 水利水运工程学报, 2020, (2): 1-8. doi: 10.12170/20200216001
    [6] 左其亭, 韩春辉, 马军霞.  水资源空间均衡理论应用规则和量化方法 . 水利水运工程学报, 2019, (6): 50-58. doi: 10.16198/j.cnki.1009-640X.2019.06.006
    [7] 刘家宏, 邵薇薇, 王浩, 李元菲, 李维佳.  水资源利用效率频谱分析方法及应用 . 水利水运工程学报, 2019, (6): 132-138. doi: 10.16198/j.cnki.1009-640X.2019.06.015
    [8] 曹永强, 朱明明, 张亮亮, 高璐.  基于可变模糊评价法的大连市水资源承载力分析 . 水利水运工程学报, 2016, (4): 40-46.
    [9] 吴浩云, 王银堂, 胡庆芳, 刘勇, 崔婷婷.  太湖流域洪水识别与洪水资源利用约束分析 . 水利水运工程学报, 2016, (5): 1-8.
    [10] 刘国良, 顾正华, 赵世凯, 尚淑丽, 李永强.  基于数据驱动的区域水资源智能配置研究 . 水利水运工程学报, 2015, (5): 38-45.
    [11] 胡庆芳,王银堂.  北三河流域洪水资源量的演变特性及驱动因素评估 . 水利水运工程学报, 2010, (1): -.
    [12] 任政,郝振纯.  水资源开发利用评价的支持向量机模型 . 水利水运工程学报, 2009, (1): -.
    [13] 张建云,王国庆.  气候变化与中国水资源可持续利用 . 水利水运工程学报, 2009, (4): -.
    [14] 王银堂.  海河流域洪水资源安全利用关键技术及应用——获2009年度国家科学技术进步奖二等奖 . 水利水运工程学报, 2009, (4): -.
    [15] 国家科技支撑计划“雨洪资源利用技术研究及应用”项目进展情况汇报及专家咨询会在长春召开 . 水利水运工程学报, 2008, (1): 77-.
    [16] 王霞,唐德善,赵洪武,李晓明.  太子河流域水资源优化配置供水模型 . 水利水运工程学报, 2005, (2): 46-52.
    [17] 耿雷华,钟华平,黄永基,颜志俊,孙荣强,彭岳津.  西北地区水资源及生态环境浅析 . 水利水运工程学报, 2003, (3): 18-22.
    [18] 金菊良,张欣莉,丁晶.  解水资源最优分配问题的遗传算法 . 水利水运工程学报, 2000, (4): 65-68.
    [19] 吴雷.  基于GIS技术的区域水资源量评价研究 . 水利水运工程学报, 1998, (2): -.
    [20] 张超.  水资源规划的系列模拟方法 . 水利水运工程学报, 1991, (3): -.
  • 加载中
图(7) / 表 (5)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  62
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-27
  • 网络出版日期:  2022-04-19
  • 刊出日期:  2022-07-03

/

返回文章
返回