[1]
|
FRY J J, CHULLIAT O, TAULE F. Chambon dam: a struggle against AAR[J]. Wasserwirtschaft, 2016, 106(6): 52-57. doi: 10.1007/s35147-016-0056-2 |
[2]
|
杨华全, 李鹏翔, 李珍. 混凝土碱骨料反应[M]. 北京: 中国水利水电出版社, 2010: 50-51.
YANG Huaquan, LI Pengxiang, LI Zhen. Alkali-aggregate reaction in concrete[M]. Beijing: China Water Resources and Hydropower Press, 2010: 50-51. (in Chinese) |
[3]
|
ABDELRAHMAN M, ELBATANOUNY M K, ZIEHL P, et al. Classification of alkali-silica reaction damage using acoustic emission: a proof-of-concept study[J]. Construction and Building Materials, 2015, 95: 406-413. doi: 10.1016/j.conbuildmat.2015.07.093 |
[4]
|
ILER R K. The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry[M]. New York: Wiley, 1979: 624-627. |
[5]
|
SWAMY R N. The alkali-silica reaction in concrete[M]. New York: Van Nostrand Reinhold, 1992. |
[6]
|
BRANTLEY S J, KUBICKI J D, WHITE F A. Kinetics of water-rock interaction[M]. New York: Springer, 2008: 175-176. |
[7]
|
唐明述, 韩苏芬. Ca(OH)2对碱-硅酸反应的影响[J]. 硅酸盐学报,1981,9(2):160-166
TANG Mingshu, HAN Sufen. Effect of Ca(OH)2 on alkali-silica reaction[J]. Journal of the Chinese Ceramic Society, 1981, 9(2): 160-166. (in Chinese) |
[8]
|
MARAGHECHI H. Development and assessment of alkali activated recycled glass-based concretes for civil infrastructure[D]. Pennsylvania: The Pennsylvania State University, 2014. |
[9]
|
GABORIAUD F, NONAT A, CHAUMONT D, et al. Aggregation processes and formation of silico-calco-alkaline gels under high ionic strength[J]. Journal of Colloid and Interface Science, 2002, 253(1): 140-149. doi: 10.1006/jcis.2002.8522. |
[10]
|
GLASSER L S D, KATAOKA N. The chemistry of ‘alkali-aggregate’ reaction[J]. Cement and Concrete Research, 1981, 11(1): 1-9. doi: 10.1016/0008-8846(81)90003-X |
[11]
|
徐惠忠. 活性Al2O3对碱-骨料反应(ASR)的抑制与制动作用[J]. 建筑材料学报,2000,3(3):213-217 doi: 10.3969/j.issn.1007-9629.2000.03.004
XU Huizhong. Weaken and brake effect of the active Al2O3 to the alkali-aggregate reaction (ASR) in the concrete[J]. Journal of Building Materials, 2000, 3(3): 213-217. (in Chinese) doi: 10.3969/j.issn.1007-9629.2000.03.004 |
[12]
|
封孝信, 胡晨光, 王晓燕, 等. Al3+对碱硅酸反应产物的影响[J]. 武汉理工大学学报,2009,31(7):131-133 doi: 10.3963/j.issn.1671-4431.2009.07.033
FENG Xiaoxin, HU Chenguang, WANG Xiaoyan, et al. Effect of Al3+ on the products of alkali-silica reaction[J]. Journal of Wuhan University of Technology, 2009, 31(7): 131-133. (in Chinese) doi: 10.3963/j.issn.1671-4431.2009.07.033 |
[13]
|
GABORIAUD F, CHAUMONT D, NONAT A, et al. Study of the influence of alkaline ions (Li, Na and K) on the structure of the silicate entities in silico alkaline sol and on the formation of the silico-calco-alkaline gel[J]. Journal of Sol-gel Science and Technology, 1998, 13(1/3): 353-358. doi: 10.1023/A:1008644405473 |
[14]
|
文梓芸. 碱-硅集料反应的模型研究——I: 溶胶的形成及其向凝胶的转化[J]. 硅酸盐学报,1991,19(2):97-103
WEN Ziyun. A study of alkali-silica reaction model I. formation of the alkali-silicate sols and their transformation into gels[J]. Journal of the Chinese Ceramic Society, 1991, 19(2): 97-103. (in Chinese) |
[15]
|
HOU X Q, STRUBLE L J, KIRKPATRICK R J. Formation of ASR gel and the roles of C-S-H and portlandite[J]. Cement and Concrete Research, 2004, 34(9): 1683-1696. doi: 10.1016/j.cemconres.2004.03.026 |
[16]
|
POWERS T C, STEINOUR H H. An interpretation of some published researches on the alkali-aggregate reaction Part 1-the chemical reactions and mechanism of expansion[J]. Journal Proceedings, 1955, 51(2): 497-516. |
[17]
|
KATAYAMA T. Late-expansive ASR in a 30-year old pc structure in eastern Japan[C]∥Proceedings of the 14th International Conference on Alkali-Aggregate Reaction. Austin-Texas, USA, 2012: 030411-KATA-05. |
[18]
|
KIM T, OLEK J. The effects of lithium ions on chemical sequence of alkali-silica reaction[J]. Cement and Concrete Research, 2016, 79: 159-168. doi: 10.1016/j.cemconres.2015.09.013 |
[19]
|
刘崇熙, 文梓芸. 混凝土碱-骨料反应[M]. 广州: 华南理工大学出版社, 1995: 368-373.
LIU Chongxi, WEN Ziyun. Alkali-aggregates reactions in concrete[M]. Guangzhou: South China University of Technology Press, 1995: 368-373. (in Chinese) |
[20]
|
POWERS T C, STEINOUR H H. An interpretation of some published researches on the alkali-aggregate reaction Part 2-A hypothesis concerning safe and unsafe reactions with reactive silica in concrete[J]. Journal Proceedings, 1955, 51(4): 785-812. |
[21]
|
BALBO F A N, PIANEZZER G A, GRAMANI L M, et al. An application to the diffusion equation in a model for the damage in concrete due to alkali-silica reaction[J]. Applied Mathematical Sciences, 2015, 9(83): 4135-4147. |
[22]
|
CHATTERJI S. Mechanisms of alkali-aggregate reaction and expansion[C]∥Proceedings of the 8th International Conference on Alkali-Aggregate Reaction. Japan: The Society of Materials Science, 1989: 101-106. |
[23]
|
王军, 邓敏. 碱硅酸反应影响下混凝土结构的寿命预测[J]. 硅酸盐通报,2006,25(5):27-30 doi: 10.3969/j.issn.1001-1625.2006.05.006
WANG Jun, DENG Min. Prediction of service life of concrete structures affected by alkali-silica reaction[J]. Bulletin of the Chinese Ceramic Society, 2006, 25(5): 27-30. (in Chinese) doi: 10.3969/j.issn.1001-1625.2006.05.006 |
[24]
|
刘晨霞, 陈改新, 纪国晋, 等. 不同温度下碱-硅酸反应膨胀规律研究[J]. 混凝土与水泥制品,2012(3):1-4 doi: 10.3969/j.issn.1000-4637.2012.03.001
LIU Chenxia, CHEN Gaixin, JI Guojin, et al. Research on expansion rules of alkali-silica reaction (ASR) under different temperatures[J]. China Concerete and Cement Products, 2012(3): 1-4. (in Chinese) doi: 10.3969/j.issn.1000-4637.2012.03.001 |
[25]
|
LARIVE C. Apports combinés de l’expérimentation et de la modélisation à la compréhension de l’alcali-réaction et de ses effets mécaniques[D]. Paris: Ecole Nationale des Ponts et Chaussées, 1997. |
[26]
|
MALLA S, WIELAND M. Analysis of an arch-gravity dam with a horizontal crack[J]. Computers & Structures, 1999, 72(1/3): 267-278. |
[27]
|
CHARLWOOD R. A review of alkali aggregate in hydro-electric plants and dams[J]. Hydropower Dams, 1994, 5: 31-62. |
[28]
|
LÉGER P, CÔTÉ P, TINAWI R. Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams[J]. Computers & Structures, 1996, 60(4): 601-611. |
[29]
|
CAPRA A B, BOURNAZEL B J P. Modeling of induced mechanical effects of alkali-aggregate reactions[J]. Cement and Concrete Research, 1998, 28(2): 251-260. doi: 10.1016/S0008-8846(97)00261-5 |
[30]
|
CAPRA B, SELLIER A. Orthotropic modelling of alkali-aggregate reaction in concrete structures: numerical simulations[J]. Mechanics of Materials, 2003, 35(8): 817-830. doi: 10.1016/S0167-6636(02)00209-0 |
[31]
|
ULM F J, COUSSY O, LI K F, et al. Thermo-chemo-mechanics of ASR expansion in concrete structures[J]. Journal of Engineering Mechanics, 2000, 126(3): 233-242. doi: 10.1061/(ASCE)0733-9399(2000)126:3(233) |
[32]
|
FARAGE M C R, ALVES J L D, FAIRBAIRN E M R. Macroscopic model of concrete subjected to alkali-aggregate reaction[J]. Cement and Concrete Research, 2004, 34(3): 495-505. doi: 10.1016/j.cemconres.2003.09.001 |
[33]
|
FAIRBAIRN E M R, RIBEIRO F L B, TOLEDO-FILHO R D, et al. Smeared cracking FEM simulation of alkali silica expansion using a new macroscopic coupled model[C]∥Proceedings of the 12th International Conference on Alkali-Aggregate Reaction in Concrete. Beijing, China: World Book Publishing Company Beijing Company, 2004. |
[34]
|
李克非. 混凝土结构碱骨料反应的力学模拟和工程预测[D]. 上海: 同济大学, 2000.
LI Kefei. Mechanical modeling and engineering prediction of alkali aggregate reaction in concrete structures[D]. Shanghai: Tongji University, 2000. (in Chinese) |
[35]
|
COMI C, FEDELE R, PEREGO U. A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction[J]. Mechanics of Materials, 2009, 41(3): 210-230. doi: 10.1016/j.mechmat.2008.10.010 |
[36]
|
SAOUMA V, PEROTTI L. Constitutive model for alkali-aggregate reactions[J]. ACI Materials Journal, 2006, 103(3): 194-202. |
[37]
|
SAOUMA V. Numerical modeling of AAR[M]. London: CRC Press, 2014. |
[38]
|
ESPOSITO R, HENDRIKS M A N. Degradation of the mechanical properties in ASR-affected concrete: overview and modeling[C]∥Proceedings of the Numerical Modeling Strategies for Sustainable Concrete Structures. France: Aix-en-Provence, 2012. |
[39]
|
WINNICKI A, PIETRUSZCZAK S. On mechanical degradation of reinforced concrete affected by alkali-silica reaction[J]. Journal of Engineering Mechanics, 2008, 134(8): 611-627. doi: 10.1061/(ASCE)0733-9399(2008)134:8(611) |
[40]
|
WINNICKI A, SERĘGA S, NORYS F. Chemoplastic modelling of alkali-silica reaction (ASR)[C]∥BIĆANIĆ N, MANG H, MESCHKE G, et al. Computational Modelling of Concrete Structures (EURO-C 2014). Balkema: CRC Press, 2014: 765-774. |
[41]
|
BANGERT F, KUHL D, MESCHKE G. Chemo-hygro-mechanical modelling and numerical simulation of concrete deterioration caused by alkali-silica reaction[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(7/8): 689-714. |
[42]
|
PESAVENTO F, GAWIN D, WYRZYKOWSKI M, et al. Modeling alkali-silica reaction in non-isothermal, partially saturated cement based materials[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 225-228: 95-115. doi: 10.1016/j.cma.2012.02.019 |
[43]
|
BAŽANT Z P, STEFFENS A. Mathematical model for kinetics of alkali-silica reaction in concrete[J]. Cement and Concrete Research, 2000, 30(3): 419-428. doi: 10.1016/S0008-8846(99)00270-7 |
[44]
|
LEMARCHAND E, DORMIEUX L, ULM F J. Micromechanics investigation of expansive reactions in chemoelastic concrete[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363(1836): 2581-2602. doi: 10.1098/rsta.2005.1588 |
[45]
|
ESPOSITO R, HENDRIKS M A N. A multiscale micromechanical approach to model the deteriorating impact of alkali-silica reaction on concrete[J]. Cement and Concrete Composites, 2016, 70: 139-152. doi: 10.1016/j.cemconcomp.2016.03.017 |
[46]
|
ALNAGGAR M, LUZIO G D, CUSATIS G. Modeling time-dependent behavior of concrete affected by alkali silica reaction in variable environmental conditions[J]. Materials, 2017, 10(5): 471. doi: 10.3390/ma10050471 |
[47]
|
COMBY-PEYROT I, BERNARD F, BOUCHARD P O, et al. Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction[J]. Computational Materials Science, 2009, 46(4): 1163-1177. doi: 10.1016/j.commatsci.2009.06.002 |
[48]
|
WU T, TEMIZER İ, WRIGGERS P. Multiscale hydro-thermo-chemo-mechanical coupling: application to alkali-silica reaction[J]. Computational Materials Science, 2014, 84: 381-395. doi: 10.1016/j.commatsci.2013.12.029 |
[49]
|
ULM F J, PETERSON M, LEMARCHAND É. Is ASR-expansion caused by chemoporoplastic dilatation?[J]. Concrete Science and Engineering, 2002, 4(13): 47-55. |
[50]
|
CHARPIN L, EHRLACHER A. Microporomechanics study of anisotropy of ASR under loading[J]. Cement and Concrete Research, 2014, 63: 143-157. doi: 10.1016/j.cemconres.2014.05.009 |
[51]
|
DUNANT C F, SCRIVENER K L. Micro-mechanical modelling of alkali-silica-reaction-induced degradation using the AMIE framework[J]. Cement and Concrete Research, 2010, 40(4): 517-525. doi: 10.1016/j.cemconres.2009.07.024 |
[52]
|
MIURA T, MULTON S, KAWABATA Y. Influence of the distribution of expansive sites in aggregates on microscopic damage caused by alkali-silica reaction: Insights into the mechanical origin of expansion[J]. Cement and Concrete Research, 2021, 142: 106355. doi: 10.1016/j.cemconres.2021.106355 |
[53]
|
GRIMAL E, SELLIER A, PAPE Y L, et al. Creep, shrinkage, and anisotropic damage in alkali-aggregate reaction swelling mechanism-Part I: a constitutive model[J]. ACI Materials Journal, 2008, 105(3): 227-235. |
[54]
|
PIGNATELLI R, COMI C, MONTEIRO P J M. A coupled mechanical and chemical damage model for concrete affected by alkali-silica reaction[J]. Cement and Concrete Research, 2013, 53: 196-210. doi: 10.1016/j.cemconres.2013.06.011 |
[55]
|
SUWITO A, JIN W, XI Y, et al. A mathematical model for the pessimum size effect of ASR in concrete[J]. Concrete Science and Engineering, 2002, 4: 23-34. |
[56]
|
POYET S, SELLIER A, CAPRA B, et al. Chemical modelling of Alkali Silica reaction: influence of the reactive aggregate size distribution[J]. Materials and Structures, 2007, 40(2): 229-239. doi: 10.1617/s11527-006-9139-3 |
[57]
|
LIUAUDAT J, LÓPEZ C, CAROL I. Diffusion-reaction model for ASR: formulation and 1D numerical implementation[C]∥BIĆANIĆ N, MANG H, MESCHKE G, et al. Computational Modelling of Concrete Structures (EURO-C 2014). Balkema: CRC Press, 2014: 639-648. |
[58]
|
NGUYEN M N, TIMOTHY J J, MESCHKE G. Numerical analysis of multiple ion species diffusion and alkali-silica reaction in concrete[C]∥BIĆANIĆ N, MANG H, MESCHKE G, et al. Computational Modelling of Concrete Structures (EURO-C 2014). Balkema: CRC Press, 2014: 789-796. |