留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混凝土碱-骨料反应长期膨胀变形预测模型研究进展

王继敏 白银 丁建彤 毛学工 蔡跃波

王继敏,白银,丁建彤,等. 混凝土碱-骨料反应长期膨胀变形预测模型研究进展[J]. 水利水运工程学报,2022. doi:  10.12170/20210805001
引用本文: 王继敏,白银,丁建彤,等. 混凝土碱-骨料反应长期膨胀变形预测模型研究进展[J]. 水利水运工程学报,2022. doi:  10.12170/20210805001
(WANG Jimin, BAI Yin, DING Jiantong, et al. A review of long-term expansion prediction model of concrete suffering alkali-aggregate reaction[J]. Hydro-Science and Engineering, 2022(in Chinese)) doi:  10.12170/20210805001
Citation: (WANG Jimin, BAI Yin, DING Jiantong, et al. A review of long-term expansion prediction model of concrete suffering alkali-aggregate reaction[J]. Hydro-Science and Engineering, 2022(in Chinese)) doi:  10.12170/20210805001

混凝土碱-骨料反应长期膨胀变形预测模型研究进展

doi: 10.12170/20210805001
基金项目: 国家自然科学基金重点项目(51739008)
详细信息
    作者简介:

    王继敏(1964—),男,湖南湘潭人,正高级工程师,博士,主要从事水利水电工程技术研究与建设管理。E-mail:wangjimin@ylhdc.com.cn

    通讯作者:

    白 银(E-mail:ybai@nhri.cn

  • 中图分类号: TU528.04

A review of long-term expansion prediction model of concrete suffering alkali-aggregate reaction

  • 摘要: 碱-骨料反应被称为混凝土的“癌症”,是影响混凝土寿命的重要因素。对于已经使用活性骨料的混凝土结构,如何预测碱-骨料反应引起的混凝土长期变形,并合理评价结构的整体安全性,是工程密切关心的问题。回顾了混凝土碱-骨料反应长期变形预测模型的研究进展,将现有模型归为宏观膨胀的数学拟合模型、结构宏观变形的唯象学模型、基于骨料膨胀的模型、考虑碱-硅酸反应(ASR)凝胶的模型、考虑物质迁移的模型等五大类,并分析了各种模型的优缺点和适用范围。认为ASR长期膨胀变形预测模型需重点考虑碱离子向骨料内部的扩散、SiO2的溶解及凝胶的组成,且需根据岩相分析来选择 “反应环”模型或“凝胶袋”模型。
  • 图  1  Larive等碱骨料反应S型膨胀曲线[25]

    Figure  1.  S-type expansion curve of AAR proposed by Larive et al[25]

    图  2  混凝土骨架与毛细孔隙混合模型[41]

    Φs:骨架体积,Φg:孔隙体积,Φl:液体体积,Φr:反应相体积,Φu:未反应相体积(图中符号上标应改成正体???)

    Figure  2.  Mixed model of concrete skeleton and capillary pore[41]

    图  3  Lemarchand等多孔基质模型[44]

    Figure  3.  Porous matrix model proposed by Lemarchand et al[44]

    图  4  Esposito等非均质模型[45]

    Figure  4.  Heterogeneous model proposed by Esposito et al[45]

    图  5  Miura等细观模型示意[52]

    Figure  5.  Meso model proposed by Miura et al[52]

  • [1] FRY J J, CHULLIAT O, TAULE F. Chambon dam: a struggle against AAR[J]. Wasserwirtschaft, 2016, 106(6): 52-57. doi:  10.1007/s35147-016-0056-2
    [2] 杨华全, 李鹏翔, 李珍. 混凝土碱骨料反应[M]. 北京: 中国水利水电出版社, 2010: 50-51.

    YANG Huaquan, LI Pengxiang, LI Zhen. Alkali-aggregate reaction in concrete[M]. Beijing: China Water Resources and Hydropower Press, 2010: 50-51. (in Chinese)
    [3] ABDELRAHMAN M, ELBATANOUNY M K, ZIEHL P, et al. Classification of alkali-silica reaction damage using acoustic emission: a proof-of-concept study[J]. Construction and Building Materials, 2015, 95: 406-413. doi:  10.1016/j.conbuildmat.2015.07.093
    [4] ILER R K. The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry[M]. New York: Wiley, 1979: 624-627.
    [5] SWAMY R N. The alkali-silica reaction in concrete[M]. New York: Van Nostrand Reinhold, 1992.
    [6] BRANTLEY S J, KUBICKI J D, WHITE F A. Kinetics of water-rock interaction[M]. New York: Springer, 2008: 175-176.
    [7] 唐明述, 韩苏芬. Ca(OH)2对碱-硅酸反应的影响[J]. 硅酸盐学报,1981,9(2):160-166. (TANG Mingshu, HAN Sufen. Effect of Ca(OH)2 on alkali-silica reaction[J]. Journal of the Chinese Ceramic Society, 1981, 9(2): 160-166. (in Chinese)
    [8] MARAGHECHI H. Development and assessment of alkali activated recycled glass-based concretes for civil infrastructure[D]. Pennsylvania: The Pennsylvania State University, 2014.
    [9] GABORIAUD F, NONAT A, CHAUMONT D, et al. Aggregation processes and formation of silico-calco-alkaline gels under high ionic strength[J]. Journal of Colloid and Interface Science, 2002, 253(1): 140-149. doi:  10.1006/jcis.2002.8522.
    [10] GLASSER L S D, KATAOKA N. The chemistry of ‘alkali-aggregate’ reaction[J]. Cement and Concrete Research, 1981, 11(1): 1-9. doi:  10.1016/0008-8846(81)90003-X
    [11] 徐惠忠. 活性Al2O3对碱-骨料反应(ASR)的抑制与制动作用[J]. 建筑材料学报,2000,3(3):213-217. (XU Huizhong. Weaken and brake effect of the active Al2O3 to the alkali-aggregate reaction (ASR) in the concrete[J]. Journal of Building Materials, 2000, 3(3): 213-217. (in Chinese) doi:  10.3969/j.issn.1007-9629.2000.03.004
    [12] 封孝信, 胡晨光, 王晓燕, 等. Al3+对碱硅酸反应产物的影响[J]. 武汉理工大学学报,2009,31(7):131-133. (FENG Xiaoxin, HU Chenguang, WANG Xiaoyan, et al. Effect of Al3+ on the products of alkali-silica reaction[J]. Journal of Wuhan University of Technology, 2009, 31(7): 131-133. (in Chinese) doi:  10.3963/j.issn.1671-4431.2009.07.033
    [13] GABORIAUD F, CHAUMONT D, NONAT A, et al. Study of the influence of alkaline ions (Li, Na and K) on the structure of the silicate entities in silico alkaline sol and on the formation of the silico-calco-alkaline gel[J]. Journal of Sol-gel Science and Technology, 1998, 13(1/3): 353-358. doi:  10.1023/A:1008644405473
    [14] 文梓芸. 碱-硅集料反应的模型研究——I: 溶胶的形成及其向凝胶的转化[J]. 硅酸盐学报,1991,19(2):97-103. (WEN Ziyun. A study of alkali-silica reaction model I. formation of the alkali-silicate sols and their transformation into gels[J]. Journal of the Chinese Ceramic Society, 1991, 19(2): 97-103. (in Chinese)
    [15] HOU X Q, STRUBLE L J, KIRKPATRICK R J. Formation of ASR gel and the roles of C-S-H and portlandite[J]. Cement and Concrete Research, 2004, 34(9): 1683-1696. doi:  10.1016/j.cemconres.2004.03.026
    [16] POWERS T C, STEINOUR H H. An interpretation of some published researches on the alkali-aggregate reaction Part 1-the chemical reactions and mechanism of expansion[J]. Journal Proceedings, 1955, 51(2): 497-516.
    [17] KATAYAMA T. Late-expansive ASR in a 30-year old pc structure in eastern Japan[C]//Proceedings of the 14th International Conference on Alkali-Aggregate Reaction. Austin-Texas, USA, 2012: 030411-KATA-05.
    [18] KIM T, OLEK J. The effects of lithium ions on chemical sequence of alkali-silica reaction[J]. Cement and Concrete Research, 2016, 79: 159-168. doi:  10.1016/j.cemconres.2015.09.013
    [19] 刘崇熙, 文梓芸. 混凝土碱-骨料反应[M]. 广州: 华南理工大学出版社, 1995: 368-373.

    LIU Chongxi, WEN Ziyun. Alkali-aggregates reactions in concrete[M]. Guangzhou: South China University of Technology Press, 1995: 368-373. (in Chinese)
    [20] POWERS T C, STEINOUR H H. An interpretation of some published researches on the alkali-aggregate reaction Part 2-A hypothesis concerning safe and unsafe reactions with reactive silica in concrete[J]. Journal Proceedings, 1955, 51(4): 785-812.
    [21] BALBO F A N, PIANEZZER G A, GRAMANI L M, et al. An application to the diffusion equation in a model for the damage in concrete due to alkali-silica reaction[J]. Applied Mathematical Sciences, 2015, 9(83): 4135-4147.
    [22] CHATTERJI S. Mechanisms of alkali-aggregate reaction and expansion[C]//Proceedings of the 8th International Conference on Alkali-Aggregate Reaction. Japan: The Society of Materials Science, 1989: 101-106.
    [23] 王军, 邓敏. 碱硅酸反应影响下混凝土结构的寿命预测[J]. 硅酸盐通报,2006,25(5):27-30. (WANG Jun, DENG Min. Prediction of service life of concrete structures affected by alkali-silica reaction[J]. Bulletin of the Chinese Ceramic Society, 2006, 25(5): 27-30. (in Chinese) doi:  10.3969/j.issn.1001-1625.2006.05.006
    [24] 刘晨霞, 陈改新, 纪国晋, 等. 不同温度下碱-硅酸反应膨胀规律研究[J]. 混凝土与水泥制品,2012(3):1-4. (LIU Chenxia, CHEN Gaixin, JI Guojin, et al. Research on expansion rules of alkali-silica reaction (ASR) under different temperatures[J]. China Concerete and Cement Products, 2012(3): 1-4. (in Chinese) doi:  10.3969/j.issn.1000-4637.2012.03.001
    [25] LARIVE C. Apports combinés de l'expérimentation et de la modélisation à la compréhension de l'alcali-réaction et de ses effets mécaniques[D]. Paris: Ecole Nationale des Ponts et Chaussées, 1997.
    [26] MALLA S, WIELAND M. Analysis of an arch-gravity dam with a horizontal crack[J]. Computers & Structures, 1999, 72(1/3): 267-278.
    [27] CHARLWOOD R. A review of alkali aggregate in hydro-electric plants and dams[J]. Hydropower Dams, 1994, 5: 31-62.
    [28] LÉGER P, CÔTÉ P, TINAWI R. Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams[J]. Computers & Structures, 1996, 60(4): 601-611.
    [29] CAPRA A B, BOURNAZEL B J P. Modeling of induced mechanical effects of alkali-aggregate reactions[J]. Cement and Concrete Research, 1998, 28(2): 251-260. doi:  10.1016/S0008-8846(97)00261-5
    [30] CAPRA B, SELLIER A. Orthotropic modelling of alkali-aggregate reaction in concrete structures: numerical simulations[J]. Mechanics of Materials, 2003, 35(8): 817-830. doi:  10.1016/S0167-6636(02)00209-0
    [31] ULM F J, COUSSY O, LI K F, et al. Thermo-chemo-mechanics of ASR expansion in concrete structures[J]. Journal of Engineering Mechanics, 2000, 126(3): 233-242. doi:  10.1061/(ASCE)0733-9399(2000)126:3(233)
    [32] FARAGE M C R, ALVES J L D, FAIRBAIRN E M R. Macroscopic model of concrete subjected to alkali-aggregate reaction[J]. Cement and Concrete Research, 2004, 34(3): 495-505. doi:  10.1016/j.cemconres.2003.09.001
    [33] FAIRBAIRN E M R, RIBEIRO F L B, TOLEDO-FILHO R D, et al. Smeared cracking FEM simulation of alkali silica expansion using a new macroscopic coupled model[C]//Proceedings of the 12th International Conference on Alkali-Aggregate Reaction in Concrete. Beijing, China: World Book Publishing Company Beijing Company, 2004.
    [34] 李克非. 混凝土结构碱骨料反应的力学模拟和工程预测[D]. 上海: 同济大学, 2000.

    LI Kefei. Mechanical modeling and engineering prediction of alkali aggregate reaction in concrete structures[D]. Shanghai: Tongji University, 2000. (in Chinese)
    [35] COMI C, FEDELE R, PEREGO U. A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction[J]. Mechanics of Materials, 2009, 41(3): 210-230. doi:  10.1016/j.mechmat.2008.10.010
    [36] SAOUMA V, PEROTTI L. Constitutive model for alkali-aggregate reactions[J]. ACI Materials Journal, 2006, 103(3): 194-202.
    [37] SAOUMA V. Numerical modeling of AAR[M]. London: CRC Press, 2014.
    [38] ESPOSITO R, HENDRIKS M A N. Degradation of the mechanical properties in ASR-affected concrete: overview and modeling[C]//Proceedings of the Numerical Modeling Strategies for Sustainable Concrete Structures. France: Aix-en-Provence, 2012.
    [39] WINNICKI A, PIETRUSZCZAK S. On mechanical degradation of reinforced concrete affected by alkali-silica reaction[J]. Journal of Engineering Mechanics, 2008, 134(8): 611-627. doi:  10.1061/(ASCE)0733-9399(2008)134:8(611)
    [40] WINNICKI A, SERĘGA S, NORYS F. Chemoplastic modelling of alkali-silica reaction (ASR)[C] //BIĆANIĆ N, MANG H, MESCHKE G, et al. Computational Modelling of Concrete Structures (EURO-C 2014). Balkema: CRC Press, 2014: 765-774.
    [41] BANGERT F, KUHL D, MESCHKE G. Chemo-hygro-mechanical modelling and numerical simulation of concrete deterioration caused by alkali-silica reaction[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(7/8): 689-714.
    [42] PESAVENTO F, GAWIN D, WYRZYKOWSKI M, et al. Modeling alkali-silica reaction in non-isothermal, partially saturated cement based materials[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 225-228: 95-115. doi:  10.1016/j.cma.2012.02.019
    [43] BAŽANT Z P, STEFFENS A. Mathematical model for kinetics of alkali-silica reaction in concrete[J]. Cement and Concrete Research, 2000, 30(3): 419-428. doi:  10.1016/S0008-8846(99)00270-7
    [44] LEMARCHAND E, DORMIEUX L, ULM F J. Micromechanics investigation of expansive reactions in chemoelastic concrete[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2005, 363(1836): 2581-2602. doi:  10.1098/rsta.2005.1588
    [45] ESPOSITO R, HENDRIKS M A N. A multiscale micromechanical approach to model the deteriorating impact of alkali-silica reaction on concrete[J]. Cement and Concrete Composites, 2016, 70: 139-152. doi:  10.1016/j.cemconcomp.2016.03.017
    [46] ALNAGGAR M, LUZIO G D, CUSATIS G. Modeling time-dependent behavior of concrete affected by alkali silica reaction in variable environmental conditions[J]. Materials, 2017, 10(5): 471. doi:  10.3390/ma10050471
    [47] COMBY-PEYROT I, BERNARD F, BOUCHARD P O, et al. Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction[J]. Computational Materials Science, 2009, 46(4): 1163-1177. doi:  10.1016/j.commatsci.2009.06.002
    [48] WU T, TEMIZER İ, WRIGGERS P. Multiscale hydro-thermo-chemo-mechanical coupling: application to alkali-silica reaction[J]. Computational Materials Science, 2014, 84: 381-395. doi:  10.1016/j.commatsci.2013.12.029
    [49] ULM F J, PETERSON M, LEMARCHAND É. Is ASR-expansion caused by chemoporoplastic dilatation?[J]. Concrete Science and Engineering, 2002, 4(13): 47-55.
    [50] CHARPIN L, EHRLACHER A. Microporomechanics study of anisotropy of ASR under loading[J]. Cement and Concrete Research, 2014, 63: 143-157. doi:  10.1016/j.cemconres.2014.05.009
    [51] DUNANT C F, SCRIVENER K L. Micro-mechanical modelling of alkali-silica-reaction-induced degradation using the AMIE framework[J]. Cement and Concrete Research, 2010, 40(4): 517-525. doi:  10.1016/j.cemconres.2009.07.024
    [52] MIURA T, MULTON S, KAWABATA Y. Influence of the distribution of expansive sites in aggregates on microscopic damage caused by alkali-silica reaction: Insights into the mechanical origin of expansion[J]. Cement and Concrete Research, 2021, 142: 106355. doi:  10.1016/j.cemconres.2021.106355
    [53] GRIMAL E, SELLIER A, PAPE Y L, et al. Creep, shrinkage, and anisotropic damage in alkali-aggregate reaction swelling mechanism-Part I: a constitutive model[J]. ACI Materials Journal, 2008, 105(3): 227-235.
    [54] PIGNATELLI R, COMI C, MONTEIRO P J M. A coupled mechanical and chemical damage model for concrete affected by alkali-silica reaction[J]. Cement and Concrete Research, 2013, 53: 196-210. doi:  10.1016/j.cemconres.2013.06.011
    [55] SUWITO A, JIN W, XI Y, et al. A mathematical model for the pessimum size effect of ASR in concrete[J]. Concrete Science and Engineering, 2002, 4: 23-34.
    [56] POYET S, SELLIER A, CAPRA B, et al. Chemical modelling of Alkali Silica reaction: influence of the reactive aggregate size distribution[J]. Materials and Structures, 2007, 40(2): 229-239. doi:  10.1617/s11527-006-9139-3
    [57] LIUAUDAT J, LÓPEZ C, CAROL I. Diffusion-reaction model for ASR: formulation and 1D numerical implementation[C]//BIĆANIĆ N, MANG H, MESCHKE G, et al. Computational Modelling of Concrete Structures (EURO-C 2014). Balkema: CRC Press, 2014: 639-648.
    [58] NGUYEN M N, TIMOTHY J J, MESCHKE G. Numerical analysis of multiple ion species diffusion and alkali-silica reaction in concrete[C]//BIĆANIĆ N, MANG H, MESCHKE G, et al. Computational Modelling of Concrete Structures (EURO-C 2014). Balkema: CRC Press, 2014: 789-796.
  • [1] 甘磊, 冯先伟, 沈振中.  盐冻作用下水工混凝土强度演化模型 . 水利水运工程学报, doi: 10.12170/20210725001
    [2] 康春涛, 贡力, 王忠慧, 杨轶群, 王鸿.  利用灰色残差GM(1,1)-Markov模型预测水工混凝土的劣化 . 水利水运工程学报, doi: 10.12170/20200228002
    [3] 张秋宇, 王立成.  基于能量法的水环境混凝土疲劳裂缝扩展模型 . 水利水运工程学报, doi: 10.12170/20190303001
    [4] 汪加梁, 杨绿峰, 余波.  圆形截面混凝土中氯离子时变扩散解析模型 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2019.05.010
    [5] 肖洋, 彭刚, 黄超, 罗曦, 彭竹君.  压剪共同作用下混凝土的损伤演化研究 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.02.015
    [6] 肖杰, 彭刚, 邓媛, 王孝政, 罗曦.  循环加卸载下混凝土滞回环特性研究 . 水利水运工程学报,
    [7] 马小亮, 彭刚, 肖杰, 胡伟华.  不同加载速率下混凝土损伤阶段的划分 . 水利水运工程学报,
    [8] 赵井辉, 刘福胜, 韦梅, 程明.  花岗岩石粉细度及掺量对混凝土微观孔隙的影响 . 水利水运工程学报,
    [9] 江培情, 王立成.  基于Ottosen模型的混凝土多轴动态强度准则 . 水利水运工程学报,
    [10] 莫卓凯, 董伟, 吴智敏, 曲秀华.  混凝土K-R阻力曲线的实用解析方法 . 水利水运工程学报,
    [11] 洪斌.  基于可靠度随机有限元法的海洋混凝土结构耐久性分析 . 水利水运工程学报,
    [12] 徐港, 苏义彪, 王青, 邓庆.  基于图像处理技术的混凝土碳化深度测量 . 水利水运工程学报,
    [13] 赵联桢, 杨平, 刘成.  混凝土早期力学性能试验研究 . 水利水运工程学报,
    [14] 吴烨,朱雅仙,刘建忠.  混凝土氯离子扩散系数时变性规律与计算模型适用性分析 . 水利水运工程学报,
    [15] 孙玮玮,李雷.  基于模糊数学理论的大坝风险后果综合评价 . 水利水运工程学报,
    [16] 林凯生,李宗利.  高孔隙水压作用下混凝土渗流-损伤耦合模型 . 水利水运工程学报,
    [17] 陈迅捷,欧阳幼玲.  海洋环境中混凝土抗冻融循环试验研究 . 水利水运工程学报,
    [18] 蔡跃波,丁建彤,白银.  水工混凝土的碱-硅反应抑制 . 水利水运工程学报,
    [19] 贲能慧,任旭华,许朴.  复杂多滑动面混凝土重力坝稳定分析与安全评价 . 水利水运工程学报,
    [20] 魏巍巍,贡金鑫,李龙.  使用荷载下圆形截面钢筋混凝土构件钢筋应力的计算 . 水利水运工程学报,
  • 加载中
图(5)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  31
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-05
  • 网络出版日期:  2022-05-28

/

返回文章
返回