留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗颗粒煤浆管道输送级配降级及其影响研究

赵利安 王铁力

赵利安,王铁力. 粗颗粒煤浆管道输送级配降级及其影响研究[J]. 水利水运工程学报,2022(3):115-121. doi:  10.12170/20210805003
引用本文: 赵利安,王铁力. 粗颗粒煤浆管道输送级配降级及其影响研究[J]. 水利水运工程学报,2022(3):115-121. doi:  10.12170/20210805003
(ZHAO Li’an, WANG Tieli. Study on grading degradation of coarse coal slurry pipeline transportation and its influence[J]. Hydro-Science and Engineering, 2022(3): 115-121. (in Chinese)) doi:  10.12170/20210805003
Citation: (ZHAO Li’an, WANG Tieli. Study on grading degradation of coarse coal slurry pipeline transportation and its influence[J]. Hydro-Science and Engineering, 2022(3): 115-121. (in Chinese)) doi:  10.12170/20210805003

粗颗粒煤浆管道输送级配降级及其影响研究

doi: 10.12170/20210805003
基金项目: 辽宁省教育厅科学研究经费资助项目(20-1054)
详细信息
    作者简介:

    赵利安(1973—),男,陕西长安人,副教授,博士,主要从事浆体管道输送理论与技术研究。E-mail:anlizhao@163.com

  • 中图分类号: TD825.6

Study on grading degradation of coarse coal slurry pipeline transportation and its influence

  • 摘要: 针对粗颗粒煤浆输送中颗粒级配降级预测研究不足的问题,采用试验研究和理论分析法,给出了输送30、40、50和60 min时煤浆中各颗粒粒级的质量百分数、黏度和水力坡度值,提出用磨矿理论研究粗颗粒煤浆管道输煤过程的构想, 据此给出了破碎率函数和磨矿平衡方程的求解方法。研究表明,煤浆输送30和50 min时颗粒级配的预测值与实测值最大偏差不大于12.53%。随着粗煤浆体输送时间的延长,煤浆相对黏度逐渐增大,主要原因是由于2.0 mm以上粗颗粒的颗粒细化,增加了0.074 mm以下的细颗粒含量。颗粒级配降级导致水力坡度降低主要是由于粗颗粒细化导致沉降速度降低及与管道底部接触的粗颗粒有所减少的原因。
  • 图  1  煤浆输送试验管路布置

    Figure  1.  Layout of coal slurry conveying pipeline

    图  2  实测的各粒级质量百分数随时间变化曲线

    Figure  2.  Variation curve of measured mass percentage of each particle size with time

    图  3  0~1 440 min时间段内各粒级质量百分数与时间关系

    Figure  3.  Relationship between mass percentage of each particle size and time in the period of 0-1 440 min

    图  4  颗粒级配降级对水力坡度和中值粒径的影响

    Figure  4.  Effect of particle gradation degradation on hydraulic gradient and median particle size

    表  1  初始颗粒粒度分布

    Table  1.   Initial particle size distribution

    粒度区间/mm质量百分数/%
    10.000~29.400 10.10
    5.000~10.000 13.50
    2.000~5.000 20.00
    0.500~2.000 21.40
    0.074~0.500 15.00
    <0.074 20.00
    下载: 导出CSV

    表  2  煤浆输送40和60 min时颗粒级配构成

    Table  2.   Composition of particle gradation when conveying for 40 min and 60 min

    粒级区间/mm40 min时质量百分数/%60 min时质量百分数/%
    10.000~29.400 7.60 5.22
    5.000~10.000 13.28 13.15
    2.000~5.000 18.54 18.23
    0.500~2.000 23.47 23.67
    0.074~0.500 17.02 17.73
    <0.074 20.09 22.00
    下载: 导出CSV

    表  3  不同输送时刻破碎率函数计算值

    Table  3.   Calculated values of crushing rate function at different conveying times

    输送时间/minS 1/min−1S 2/min−1S3/min−1S 4/min−1S 5/min−1
    40 0.005 818 0.002 061 0.001 720 0.000 425 0.000 033
    60 0.008 400 0.004 061 0.003 320 0.001 230 0.000 015
    平均 0.007 109 0.003 061 0.002 520 0.000 825 0.000 028
    下载: 导出CSV

    表  4  不同时刻颗粒级配预测值和实测值对比

    Table  4.   Comparison of predicted and measured values of particle gradation at different times

    粒级区间/mm不同时刻各粒级分布/%相对误差/ %
    t=0t=30 min (计算)t=30 min
    (实测)
    t=50 min
    (计算)
    t=50 min
    (实测)
    t=30 mint=50 min
    10.000~29.400 10.10 8.17 9.34 7.08 6.44 −12.53 9.94
    5.000~10.000 13.50 13.37 13.43 13.17 13.21 −0.44 −0.30
    2.000~5.000 20.00 18.90 18.79 18.19 18.34 0.59 −0.82
    0.500~2,000 21.40 22.99 22.41 23.93 23.52 2.59 1.74
    0.074~0.500 15.00 16.52 16.01 17.51 17.30 3.19 1.21
    <0.074 20.00 20.07 20.02 20.11 21.21 0.25 −5.19
    下载: 导出CSV

    表  5  煤浆级配降级对黏度影响

    Table  5.   Effect of coal slurry gradation degradation on viscosity

    输送
    时间/min
    粒径小于0.074 mm
    的质量百分数/%
    实测相对黏度
    计算相对黏度
    相对
    误差/%
    0 20.00 1.421 1.309 −7.88
    30 20.02 1.213 1.315 8.41
    40 20.09 1.345 1.322 −1.71
    50 21.21 1.273 1.350 6.05
    60 22.00 1.398 1.373 −1.82
    下载: 导出CSV
  • [1] 于新胜, 陈益滨. 管道输煤技术应用现状及展望[J]. 煤炭工程,2020,52(5):1-4. (YU Xinsheng, CHEN Yibin. Application status and prospect of pipeline coal transport[J]. Coal Engineering, 2020, 52(5): 1-4. (in Chinese)

    YU Xinsheng, CHEN Yibin. Application status and prospect of pipeline coal transport[J]. Coal Engineering, 2020, 52(5): 1-4. (in Chinese))
    [2] 马妍, 陈家琪, 门著铭, 等. 管道输煤参数优化研究[J]. 煤炭工程,2017,49(5):107-111. (MA Yan, CHEN Jiaqi, MEN Zhuming, et al. Optimization of coal pipeline transportation parameters[J]. Coal Engineering, 2017, 49(5): 107-111. (in Chinese) doi:  10.11799/ce201705032

    MA Yan, CHEN Jiaqi, MEN Zhuming, et al. Optimization of coal pipeline transportation parameters[J]. Coal Engineering, 2017, 49(5): 107-111. (in Chinese)) doi:  10.11799/ce201705032
    [3] 汪家琼, 叶群, 闫科委, 等. 颗粒直径对渣浆泵冲蚀磨损性能的影响[J]. 排灌机械工程学报,2014,32(10):840-844. (WANG Jiaqiong, YE Qun, YAN Kewei, et al. Effects of particle diameter on erosion wear performance of slurry pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(10): 840-844. (in Chinese) doi:  10.3969/j.issn.1674-8530.13.0258

    WANG Jiaqiong, YE Qun, YAN Kewei, et al. Effects of particle diameter on erosion wear performance of slurry pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(10): 840-844. (in Chinese)) doi:  10.3969/j.issn.1674-8530.13.0258
    [4] 吴波, 严宏志, 徐海良, 等. 渣浆泵内固相颗粒冲蚀特性的数值模拟[J]. 中南大学学报(自然科学版),2012(1):124-129. (WU Bo, YAN Hongzhi, XU Hailiang, et al. Numerical simulation about erosion characteristics of solid particle in slurry pump[J]. Journal of Central South University (Science and Technology), 2012(1): 124-129. (in Chinese)

    WU Bo, YAN Hongzhi, XU Hailiang, et al. Numerical simulation about erosion characteristics of solid particle in slurry pump[J]. Journal of Central South University (Science and Technology), 2012(1): 124-129. (in Chinese))
    [5] HUI W. Numeration simulation of the solid/liquid two-phase flow field in a slurry pump[D]. Xi’an: Xi’an University of Architecture and Technology, 2009.
    [6] SHOOK C A, HAAS D B, HUSBAND W H W, et al. Breakage rates of lignite particles during hydraulic transport[J]. The Canadian Journal of Chemical Engineering, 1978, 56(4): 448-454. doi:  10.1002/cjce.5450560403
    [7] MOSA E S, SALEH A M, TAHA A T, et al. A study on the effect of slurry temperature, slurry pH and particle degradation on rheology and pressure drop of coal water slurries[J]. Journal of Engineering Sciences, 2007, 35(5): 1297-1311.
    [8] 赵利安. 煤浆管道输送颗粒级配降级研究[J]. 水利水运工程学报,2016(6):109-115. (ZHAO Li’an. Test analysis of particle size distribution degradation for coal slurry conveying by pipelines[J]. Hydro-Science and Engineering, 2016(6): 109-115. (in Chinese)

    ZHAO Lian. Test analysis of particle size distribution degradation for coal slurry conveying by pipelines[J]. Hydro-Science and Engineering, 2016(6): 109-115. (in Chinese))
    [9] ZHAO L A, WANG T L, CAI R H. Prediction of coal slurry pipeline transportation grading reduction and its influence on pipe transportation parameters[J]. Brazilian Journal of Chemical Engineering, 2019, 36(2): 845-853. doi:  10.1590/0104-6632.20190362s20180209
    [10] 黄礼龙, 张国旺, 宋晓岚, 等. 基于MATLAB/Simulink的立磨机批次磨矿的建模与仿真研究[J]. 矿冶工程,2016,36(3):26-30, 35. (HUANG Lilong, ZHANG Guowang, SONG Xiaolan, et al. Modelling and simulation of batch grinding with vertical stirred mill based on MATLAB/simulink[J]. Mining and Metallurgical Engineering, 2016, 36(3): 26-30, 35. (in Chinese) doi:  10.3969/j.issn.0253-6099.2016.03.007

    HUANG Lilong, ZHANG Guowang, SONG Xiaolan, et al. Modelling and simulation of batch grinding with vertical stirred mill based on MATLAB/simulink[J]. Mining and Metallurgical Engineering, 2016, 36(3): 26-30, 35. (in Chinese)) doi:  10.3969/j.issn.0253-6099.2016.03.007
    [11] 何逵, 库建刚, 徐国印, 等. 钒钛磁铁矿磨矿动力学试验研究[J]. 矿冶工程,2016,36(6):35-38. (HE Kui, KU Jiangang, XU Guoyin, et al. Grinding kinetics of vanadic titanomagnetite from Panzhihua[J]. Mining and Metallurgical Engineering, 2016, 36(6): 35-38. (in Chinese) doi:  10.3969/j.issn.0253-6099.2016.06.009

    HE Kui, KU Jiangang, XU Guoyin, et al. Grinding kinetics of vanadic titanomagnetite from Panzhihua[J]. Mining and Metallurgical Engineering, 2016, 36(6): 35-38. (in Chinese)) doi:  10.3969/j.issn.0253-6099.2016.06.009
    [12] 杨金林, 周文涛, 蒋林伶, 等. 磨矿动力学研究概述[J]. 矿产综合利用,2017(4):4-10. (YANG Jinlin, ZHOU Wentao, JIANG Linling, et al. Review of grinding kinetics research[J]. Multipurpose Utilization of Mineral Resources, 2017(4): 4-10. (in Chinese) doi:  10.3969/j.issn.1000-6532.2017.04.002

    YANG Jinlin, ZHOU Wentao, JIANG Linling, et al. Review of grinding kinetics research[J]. Multipurpose Utilization of Mineral Resources, 2017(4): 4-10. (in Chinese)) doi:  10.3969/j.issn.1000-6532.2017.04.002
    [13] 王晨晨, 黄朝德, 付金涛, 等. 青海某铅锌矿磨矿动力学试验研究[J]. 矿产综合利用,2020(1):59-61. (WANG Chenchen, HUANG Chaode, FU Jintao, et al. Experimental research ongrinding kinetics for a lead-zinc ore in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 59-61. (in Chinese) doi:  10.3969/j.issn.1000-6532.2020.01.012

    WANG Chenchen, HUANG Chaode, FU Jintao, et al. Experimental research ongrinding kinetics for a lead-zinc ore in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 59-61. (in Chinese)) doi:  10.3969/j.issn.1000-6532.2020.01.012
    [14] PARAPARI P S, PARIAN M, ROSENKRANZ J. Breakage process of mineral processing comminution machines—An approach to liberation[J]. Advanced Powder Technology, 2020, 31(9): 3669-3685. doi:  10.1016/j.apt.2020.08.005
    [15] KWON J, CHO H. Investigation of error distribution in the back-calculation of breakage function model parameters via nonlinear programming[J]. Minerals, 2021, 11(4): 425. doi:  10.3390/min11040425
    [16] BERTHIAUX H, VARINOT C, DODDS J. Approximate calculation of breakage parameters from batch grinding tests[J]. Chemical Engineering Science, 1996, 51(19): 4509-4516. doi:  10.1016/0009-2509(96)00275-8
    [17] ARUNANSHU C. Investigation on slurry transportation performance of coal-water mixture at high concentrations[D]. India: Thapar University, 2013.
  • [1] 龙蛟, 顾琳琳, 王振, CHENGChen.  多次加-卸载条件下考虑颗粒破碎的钙质砂一维压缩特性研究 . 水利水运工程学报, 2022, (1): 144-150. doi: 10.12170/20210225002
    [2] 张雨林, 石惊涛, 涂国祥, 万畅, 邱潇, 钱昭宇.  粗、巨颗粒富集位置对堆积体降雨入渗的影响 . 水利水运工程学报, 2021, (5): 76-83. doi: 10.12170/20201118002
    [3] 巩妮娜, 胡少伟, 范向前, 蔡小宁.  配筋率对混凝土Ⅰ-Ⅱ复合型断裂过程声发射特征的影响 . 水利水运工程学报, 2020, (6): 55-63. doi: 10.12170/20191225002
    [4] 宁逢伟, 丁建彤, 白银, 杨森, 雷英强.  纳米级掺合料和粗合成纤维对湿喷混凝土回弹率的影响 . 水利水运工程学报, 2019, (1): 42-49. doi: 10.16198/j.cnki.1009-640X.2019.01.006
    [5] 齐永正, 袁梓瑞, 杨永恒.  不同正压力下钙质砂颗粒剪切破碎特性分析 . 水利水运工程学报, 2018, (5): 63-68. doi: 10.16198/j.cnki.1009-640X.2018.05.009
    [6] 王龙, 陆晓平, 薄以霆.  颗粒形状及级配对粗颗粒土休止角的影响 . 水利水运工程学报, 2017, (6): 79-84. doi: 10.16198/j.cnki.1009-640X.2017.06.011
    [7] 顾杰, 郑宇华.  水力坡度对淹没单丁坝近区水流结构的影响 . 水利水运工程学报, 2017, (2): 75-81. doi: 10.16198/j.cnki.1009-640X.2017.02.010
    [8] 张玘璐, 杨赛利, 王立成.  三级配大骨料混凝土双轴抗压性能试验分析 . 水利水运工程学报, 2016, (5): 78-84.
    [9] 李小梅, 关云飞, 凌华, 武颖利.  考虑级配影响的堆石料强度与变形特性 . 水利水运工程学报, 2016, (4): 32-39.
    [10] 邱灏, 曹斌, 夏建新.  粗颗粒物料管道水力输送不淤临界流速计算 . 水利水运工程学报, 2016, (6): 103-108.
    [11] 赵利安.  煤浆管道输送颗粒级配降级研究 . 水利水运工程学报, 2016, (6): 109-115.
    [12] 赵利安, 许振良.  粗砂浆体水平管道流动水力坡度预测研究 . 水利水运工程学报, 2013, (1): 71-75.
    [13] 魏丽,卢金友,徐海涛.  不连续宽级配河床垂线流速分布试验研究 . 水利水运工程学报, 2012, (3): 26-31.
    [14] 梁斌,陈先朴,邵东超,蔡华.  高速掺气水流的气泡级配 . 水利水运工程学报, 2002, (2): 66-68.
    [15] 刘杰.  混凝土面板坝碎石垫层料最佳级配试验研究 . 水利水运工程学报, 2001, (4): 1-7.
    [16] 葛祖立.  广级配砂砾滤层保砂性的设计方法 . 水利水运工程学报, 1990, (4): -.
    [17] 徐啸.  细颗粒粘性泥沙沉降率的探讨 . 水利水运工程学报, 1989, (4): -.
    [18] 司洪洋.  几种粗颗粒土的剪胀性质 . 水利水运工程学报, 1986, (2): -.
    [19] 鲍曙东,刘家驹.  波浪作用下粗颗粒泥沙的运动规律 . 水利水运工程学报, 1986, (3): -.
    [20] 司洪洋.  粗颗粒土石料的定名与粗度系数 . 水利水运工程学报, 1981, (1): -.
  • 加载中
图(4) / 表 (5)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  104
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-05
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-07-03

/

返回文章
返回