Numerical simulation of split grouting of heterogeneous clay with different permeability coefficient
-
摘要: 针对地下工程中软弱黏土地层病害治理问题,考虑黏土材料的非均质性与低渗透性,对黏土进行劈裂注浆加固特性分析。基于Weibull分布函数理论构建非均质黏土地层模型,对黏土进行劈裂注浆加固模拟;基于注浆模拟计算结果,分析不同均质度与渗透系数对黏土劈裂注浆效果的影响。结果表明:土体劈裂注浆难度随均质度的增大而增加,均质度较高土体劈裂后产生的裂缝较为单一,裂缝分布范围较小;均质度较低土体劈裂产生的裂缝宽度较大,裂缝影响范围更广。浆脉扩展的长度及增长幅度随土体渗透系数的增大而减小,高渗透系数土体的劈裂浆脉宽度要大于低渗透系数的土体,渗透系数较小土体的浆脉长度始终比较大,浆脉距注浆孔越远,其宽度越小。研究可为软弱黏土地层劈裂注浆的工程应用提供指导。Abstract: Considering the heterogeneity and low permeability of the clay materials, the fracture grouting reinforcement characteristics of the clay are analyzed in view of the disease treatment of soft clay stratum in underground engineering. Based on Weibull distribution function theory, a heterogeneous clay formation model was constructed, and the clay was simulated by splitting grouting. Based on the results of grouting simulation, the influence of different uniformity and permeability coefficients on the grouting effect of clay splitting was analyzed. The results show that the difficulty of splitting grouting increases with the increase of the uniformity of soil mass, and the crack produced by splitting of soil mass with higher uniformity is relatively single and the distribution range of crack is smaller. The crack width is larger and the influence range is wider when the soil is less homogeneous. The length and growth amplitude of slurry vein expansion decrease with the increase of soil permeability coefficient. The width of slurry vein in the soil with a large permeability coefficient is larger than that in the soil with a low permeability coefficient. The length of slurry vein in the soil with a small permeability coefficient is always larger, and the farther the slurry vein is from the grouting hole, the smaller the width. The research has important guiding significance for the engineering application of fracture grouting in soft clay stratum.
-
表 1 现场孔隙率勘探值
Table 1. Field porosity exploration value
TK1 TK2 TK3 TK4 TK5 TK6 勘探深度/m 孔隙率 勘探深度/m 孔隙率 勘探深度/m 孔隙率 勘探深度/m 孔隙率 勘探深度/m 孔隙率 勘探深度/m 孔隙率 0 0.45 0 0.44 0 0.46 0 0.50 0 0.40 0 0.46 1.20 0.26 0.55 0.41 0.40 0.48 1.11 0.49 0.96 0.36 0.46 0.26 1.53 0.28 1.57 0.39 1.21 0.31 1.56 0.38 1.58 0.44 2.29 0.39 3.19 0.26 1.75 0.28 2.66 0.40 1.98 0.25 2.68 0.33 2.29 0.36 3.81 0.45 3.18 0.25 3.30 0.43 2.89 0.35 3.11 0.42 2.93 0.25 4.80 0.38 3.61 0.27 3.61 0.30 3.21 0.35 3.26 0.25 3.06 0.33 5.35 0.49 4.25 0.35 3.92 0.35 3.84 0.37 4.88 0.29 3.72 0.44 5.71 0.47 5.28 0.39 4.09 0.43 4.91 0.29 5.19 0.34 3.84 0.48 6.24 0.39 6.30 0.48 4.30 0.27 5.98 0.45 5.78 0.35 4.36 0.31 6.53 0.26 6.35 0.34 5.28 0.45 6.63 0.39 6.58 0.32 5.66 0.39 表 2 土体物理指标参数
Table 2. Physical index parameters of soil
力学参数 参数值 力学参数 参数值 均质度 1, 2, 4, 6, 8 泊松比 0.35 弹性模量/Pa 由地层不同孔隙率
参数值确定孔隙水压力系数 0.5 黏聚力/MPa 0.02 细观抗压强度/MPa 0.5 内摩擦角/° 22 初始有效压力/MPa 0 渗透系数/(m·d−1) 0.50, 0.05 单步增量/MPa 0.01 -
[1] 张连震, 刘人太, 张庆松, 等. 软弱地层劈裂–压密注浆加固效果定量计算方法研究[J]. 岩石力学与工程学报,2018,37(5):1169-1184 ZHANG Lianzhen, LIU Rentai, ZHANG Qingsong, et al. Calculation of reinforcement effect of fracturing-compaction grouting in soft strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1169-1184. (in Chinese) [2] 高伟杰, 王建华, 田兆丰, 等. 砂土及黏土场地钻井船插桩对临近桩的影响[J]. 水利水运工程学报,2018(5):111-119 GAO Weijie, WANG Jianhua, TIAN Zhaofeng, et al. Influences of spudcan penetration and extraction on adjacent piles in sand and clay[J]. Hydro-Science and Engineering, 2018(5): 111-119. (in Chinese) [3] 汪恩良, 商舒婷, 田雨, 等. 齐齐哈尔地区粉质黏土冻胀特性试验研究[J]. 水利水运工程学报,2020(4):80-87 doi: 10.12170/20200106005 WANG Enliang, SHANG Shuting, TIAN Yu, et al. Experimental study on frost heaving characteristic of silty clay in Qiqihar region[J]. Hydro-Science and Engineering, 2020(4): 80-87. (in Chinese) doi: 10.12170/20200106005 [4] 李志鹏. 断层软弱介质注浆扩散加固机理及工程应用[D]. 济南: 山东大学, 2015. LI Zhipeng. Mechanism of grouting spread and reinforcement on soft medium in fault and its application[D]. Jinan: Shandong University, 2015. (in Chinese) [5] 王哲, 龚晓南, 程永辉, 等. 劈裂注浆法在运营铁路软土地基处理中的应用[J]. 岩石力学与工程学报,2005,24(9):1619-1623 doi: 10.3321/j.issn:1000-6915.2005.09.025 WANG Zhe, GONG Xiaonan, CHENG Yonghui, et al. Application of fracturing grouting method to treat soft foundation of operating railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1619-1623. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.09.025 [6] 唐亚周, 雷进生, 马波, 等. 不同均质度的黏土劈裂注浆特性及效果分析[J]. 地下空间与工程学报,2020,16(2):547-554 TANG Yazhou, LEI Jinsheng, MA Bo, et al. Study on clay split grouting with different homogeneity and its effect[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(2): 547-554. (in Chinese) [7] 雷进生, 刘非, 王乾峰, 等. 非均质土层的注浆扩散特性与加固力学行为研究[J]. 岩土工程学报,2015,37(12):2245-2253 doi: 10.11779/CJGE201512014 LEI Jinsheng, LIU Fei, WANG Qianfeng, et al. Diffusion characteristics and reinforcement mechanics of grouting in non-homogeneous soil strata[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2245-2253. (in Chinese) doi: 10.11779/CJGE201512014 [8] 雷进生, 夏磊, 王乾峰, 等. 非均质地层地质剖面的随机预测模型[J]. 地下空间与工程学报,2016,12(1):84-89 LEI Jinsheng, XIA Lei, WANG Qianfeng, et al. Random prediction model of geological section for non-homogeneous formation[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(1): 84-89. (in Chinese) [9] 巫尚蔚, 杨春和, 张超, 等. 基于Weibull模型的细粒尾矿粒径分布[J]. 重庆大学学报,2016,39(3):1-12 doi: 10.11835/j.issn.1000-582X.2016.03.001 WU Shangwei, YANG Chunhe, ZHANG Chao, et al. Particle size distribution of fine-grained tailings based on Weibull distribution[J]. Journal of Chongqing University, 2016, 39(3): 1-12. (in Chinese) doi: 10.11835/j.issn.1000-582X.2016.03.001 [10] 蒋浩鹏, 姜谙男, 杨秀荣. 基于Weibull分布的高温岩石统计损伤本构模型及其验证[J]. 岩土力学,2021,42(7):1894-1902 JIANG Haopeng, JIANG Annan, YANG Xiurong. Statistical damage constitutive model of high temperature rock based on Weibull distribution and its verification[J]. Rock and Soil Mechanics, 2021, 42(7): 1894-1902. (in Chinese) [11] 龙尧, 张家生, 陈俊桦. 基于Weibull分布的土-结构接触面剪切损伤模型研究[J]. 公路交通科技,2017,34(5):65-71 LONG Yao, ZHANG Jiasheng, CHEN Junhua. Study on shear damage model for soil-structure interface based on Weibull distribution[J]. Journal of Highway and Transportation Research and Development, 2017, 34(5): 65-71. (in Chinese) [12] 唐亚周. 膨胀性浆液劈裂注浆的抬升效应分析[D]. 宜昌: 三峡大学, 2019. TANG Yazhou. Analysis of lifting effect of expansive cement slurry in splitting grouting[D]. Yichang: China Three Gorges University, 2019. (in Chinese) [13] 雷进生, 武增琳, 姚奇, 等. 基于Weibull分布的非均质地层物性参数随机模型[J]. 地下空间与工程学报,2017,13(3):684-691 LEI Jinsheng, WU Zenglin, YAO Qi, et al. Rand model of heterogeneous formation physical parameters based on Weibull distribution[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(3): 684-691. (in Chinese) [14] 雷进生. 碎石土地基注浆加固力学行为研究[D]. 武汉: 中国地质大学, 2013. LEI Jinsheng. Research on mechanical behavior of grout in gravelly soil foundations[D]. Wuhan: China University of Geosciences, 2013. (in Chinese) [15] 马波, 雷进生, 涂保林, 等. 膨胀复合浆液的物理力学性能试验研究[J]. 水利水运工程学报,2020(3):92-98 doi: 10.12170/20190227002 MA Bo, Lei Jinsheng, TU Baolin, et al. Experimental study on physical and mechanical properties of expanded composite slurry[J]. Hydro-Science and Engineering, 2020(3): 92-98. (in Chinese) doi: 10.12170/20190227002 [16] 冉启全, 李士伦. 流固耦合油藏数值模拟中物性参数动态模型研究[J]. 石油勘探与开发,1997,24(3):61-65, 100 doi: 10.3321/j.issn:1000-0747.1997.03.015 RAN Qiquan, LI Shilun. Study on dynamic models of reservoir parameters in the coupled simulation of multiphase flow and reservoir deformation[J]. Petroleum Exploration and Development, 1997, 24(3): 61-65, 100. (in Chinese) doi: 10.3321/j.issn:1000-0747.1997.03.015 [17] 程少振. 土体劈裂注浆扩散与加固机理及工程应用[D]. 北京: 北京交通大学, 2019. CHENG Shaozhen. Study on propagation and reinforcement mechanic of fracture grouting in soil and its engineering application[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese) [18] 李永乐, 刘翠然, 刘海宁, 等. 非饱和土的渗透特性试验研究[J]. 岩石力学与工程学报,2004,23(22):3861-3865 doi: 10.3321/j.issn:1000-6915.2004.22.023 LI Yongle, LIU Cuiran, LIU Haining, et al. Testing study on permeability characteristics of unsaturated soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(22): 3861-3865. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.22.023 [19] 孙大松, 刘鹏, 夏小和, 等. 非饱和土的渗透系数[J]. 水利学报,2004,35(3):71-75 doi: 10.3321/j.issn:0559-9350.2004.03.012 SUN Dasong, LIU Peng, XIA Xiaohe, et al. Permeability coefficient of unsaturated soils[J]. Journal of Hydraulic Engineering, 2004, 35(3): 71-75. (in Chinese) doi: 10.3321/j.issn:0559-9350.2004.03.012 -