留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重塑非饱和黄土浸水入渗规律的模型试验研究

徐硕昌 刘德仁 王旭 安政山 张转军 金芯

徐硕昌,刘德仁,王旭,等. 重塑非饱和黄土浸水入渗规律的模型试验研究[J]. 水利水运工程学报. doi:  10.12170/20210903001
引用本文: 徐硕昌,刘德仁,王旭,等. 重塑非饱和黄土浸水入渗规律的模型试验研究[J]. 水利水运工程学报. doi:  10.12170/20210903001
(XU Shuochang, LIU Deren, WANG Xu, et al. Model test study on infiltration law of remolded unsaturated loess[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20210903001
Citation: (XU Shuochang, LIU Deren, WANG Xu, et al. Model test study on infiltration law of remolded unsaturated loess[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20210903001

重塑非饱和黄土浸水入渗规律的模型试验研究

doi: 10.12170/20210903001
基金项目: 国家自然科学基金资助项目(41662017);兰州市科技计划资助项目(2018-4-33)
详细信息
    作者简介:

    徐硕昌(1994—),男,甘肃武威人,硕士研究生,主要从事岩土工程及特殊土的研究工作。E-mail:xuscqinql@163.com

    通讯作者:

    刘德仁(E-mail:liuderen@mail.lzjtu.cn

  • 中图分类号: TU444

Model test study on infiltration law of remolded unsaturated loess

  • 摘要: 为了研究非饱和黄土的浸水入渗规律,开展了重塑黄土的浸水入渗模型试验,分析了浸水过程中不同位置的体积含水率变化及湿润锋面发展过程,研究了入渗水分在水平和径向的发展变化规律,并通过考虑空气压力的Green-Ampt模型计算得到不同时间的入渗深度,与实测值进行对比分析。研究表明:不同测点的体积含水率变化趋势基本一致,都会经历稳定-快速增长-到达峰值-快速减小-再次增长-维持稳定6个阶段;浸水入渗过程受入渗深度、渗流路径、沿程黏滞阻力和空气压力的共同影响,入渗深度越深、距离中心轴位置越远、湿润锋发展越滞后,入渗速率越小。深度从0 cm增加至100 cm时,入渗率从14.93 cm/h减小至1.67 cm/h。对不同位置的竖向入渗速率与入渗深度的关系进行拟合发现:竖向入渗速率与入渗深度呈二次方关系,且拟合度达到0.9以上;径向水分运移是该深度水分径向扩散和上部水分竖向入渗综合作用的结果,故相比于竖向入渗较快;模型计算结果中湿润锋面发展趋势与实测竖向入渗情况一致,但入渗后期的入渗深度计算值比实测偏大。研究结果可为黄土地基浸水入渗研究提供参考。
  • 图  1  水分传感器及读数仪

    Figure  1.  Moisture sensor and reading meter

    图  2  模型填筑及水分传感器布置 (单位:cm)

    Figure  2.  Model filling and transducer layout chart(unit: cm)

    图  3  每层传感器平面布置 (单位:cm)

    Figure  3.  Layout chart of sensors per layer(unit: cm)

    图  4  不同位置气压随入渗时间变化曲线

    Figure  4.  Change of air pressure with time at different positions

    图  5  体积含水率随入渗时间变化曲线

    Figure  5.  Change of volumetric water content with time

    图  6  竖向水分入渗过程曲线

    Figure  6.  Vertical infiltration process curve of water

    图  7  湿润锋面到达测点的时间差统计桥图

    Figure  7.  Statistical bridge diagram of infiltration time difference of wetting front reaching different depths

    图  8  竖向水分入渗速率随深度变化

    Figure  8.  Vertical water infiltration rate varies with depth

    图  9  径向水分运移过程

    Figure  9.  Radial water transport process

    图  10  湿润锋面扩散过程随时间变化

    Figure  10.  Wetting front diffusion process changing with time

    图  11  浸水入渗过程中湿润深度随时间变化曲线

    Figure  11.  Curve of wetting depth with time in the process of immersion infiltration

    表  1  土体基本物理指标

    Table  1.   Basic physical properties of soil

    最优含水率/
    %
    最大干密度/
    (g·cm−3
    液限/
    %
    塑限/
    %
    塑性
    指数
    土粒
    比重
    颗粒组成/%
    ≥0.075 mm0.075~0.005 mm≤0.005 mm
    16.31.7727.117.49.72.718.4367.7923.78
    下载: 导出CSV

    表  2  竖向水分入渗过程

    Table  2.   Vertical infiltration process of water

    深度/cm湿润锋面到达时间/h
    中心轴位置处1/2半径位置处边缘位置处
    20 1.34 1.83 2.33
    40 4.00 6.00 8.50
    60 15.00 18.00 21.00
    80 28.00 31.00 35.00
    100 40.00 43.00 47.00
    下载: 导出CSV

    表  3  不同位置处竖向水分入渗速率

    Table  3.   Vertical water infiltration rate at different positions

    深度/cm竖向水分入渗速率/(cm·h−1
    中心轴位置处1/2半径位置处边缘位置处
    0~20 14.93 10.93 8.58
    20~40 7.52 4.80 3.24
    40~60 1.82 1.67 1.60
    60~80 1.54 1.54 1.43
    80~100 1.67 1.67 1.67
    下载: 导出CSV

    表  4  不同深度处重塑黄土径向水分运移速率

    Table  4.   Rate of radial water transport in remolded loess at different depths

    距模型中心轴的距离/cm不同深度径向水分运移速率/(cm·h−1
    20 cm40 cm60 cm80 cm100 cm
    0~2040.8210.006.676.676.67
    20~4547.0210.008.336.256.25
    下载: 导出CSV
  • [1] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学,2019,40(1):1-54. (CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese)

    CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese))
    [2] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报,2001,23(1):3-13. (XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3-13. (in Chinese) doi:  10.3321/j.issn:1000-4548.2001.01.002

    XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3-13. (in Chinese)) doi:  10.3321/j.issn:1000-4548.2001.01.002
    [3] HAERI S M, AKBARI GARAKANI A, ROOH PARVAR H R, et al. Testing and constitutive modeling of lime-stabilized collapsible loess. I: experimental investigations[J]. International Journal of Geomechanics, 2019, 19(4): 04019006. doi:  10.1061/(ASCE)GM.1943-5622.0001364
    [4] 刘松玉, 杜广印, 毛忠良, 等. 振杆密实法处理湿陷性黄土地基试验研究[J]. 岩土工程学报,2020,42(8):1377-1383. (LIU Songyu, DU Guangyin, MAO Zhongliang, et al. Field tests on improvement of collapsible loess by vibratory probe compaction method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1377-1383. (in Chinese)

    LIU Songyu, DU Guangyin, MAO Zhongliang, et al. Field tests on improvement of collapsible loess by vibratory probe compaction method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1377-1383. (in Chinese))
    [5] LI Y Y, XU S S, LIU H Q, et al. Displacement and stress characteristics of tunnel foundation in collapsible loess ground reinforced by jet grouting columns[J]. Advances in Civil Engineering, 2018(6): 1-16.
    [6] 刘保健, 谢永利, 于友成. 黄土非饱和入渗规律原位试验研究[J]. 岩石力学与工程学报,2004,23(24):4156-4160. (LIU Baojian, XIE Yongli, YU Youcheng. In-situ testing study on infiltration in unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4156-4160. (in Chinese) doi:  10.3321/j.issn:1000-6915.2004.24.011

    LIU Baojian, XIE Yongli, YU Youcheng. In-situ testing study on infiltration in unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4156-4160. (in Chinese)) doi:  10.3321/j.issn:1000-6915.2004.24.011
    [7] 吴会东. 山西北部地区黄土湿陷性快速判定方法研究[J]. 铁道工程学报,2021,38(2):35-40. (WU Huidong. Research on a fast judgement method of loess collapsibility in northern Shanxi[J]. Journal of Railway Engineering Society, 2021, 38(2): 35-40. (in Chinese) doi:  10.3969/j.issn.1006-2106.2021.02.007

    WU Huidong. Research on a fast judgement method of loess collapsibility in northern Shanxi[J]. Journal of Railway Engineering Society, 2021, 38(2): 35-40. (in Chinese)) doi:  10.3969/j.issn.1006-2106.2021.02.007
    [8] 武小鹏, 王兰民, 房建宏, 等. 原状黄土地基渗水特性及其与自重湿陷的关系研究[J]. 岩土工程学报,2018,40(6):1002-1010. (WU Xiaopeng, WANG Lanmin, FANG Jianhong, et al. Seepage characteristics and their relationship with self-weight collapse of intact loess ground[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1002-1010. (in Chinese) doi:  10.11779/CJGE201806005

    WU Xiaopeng, WANG Lanmin, FANG Jianhong, et al. Seepage characteristics and their relationship with self-weight collapse of intact loess ground[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1002-1010. (in Chinese)) doi:  10.11779/CJGE201806005
    [9] LU Q Z, LIU Y, PENG J B, et al. Immersion test of loess in ground fissures in Shuanghuaishu, Shaanxi Province, China[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(5): 2299-2312. doi:  10.1007/s10064-019-01718-5
    [10] 邵生俊, 李骏, 李国良, 等. 大厚度湿陷性黄土隧道现场浸水试验研究[J]. 岩土工程学报,2018,40(8):1395-1404. (SHAO Shengjun, LI Jun, LI Guoliang, et al. Field immersion tests on tunnel in large-thickness collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1395-1404. (in Chinese)

    SHAO Shengjun, LI Jun, LI Guoliang, et al. Field immersion tests on tunnel in large-thickness collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1395-1404. (in Chinese))
    [11] 谢妮, 邹维列, 严秋荣, 等. 黄土路基边坡降雨响应的试验研究[J]. 四川大学学报(工程科学版),2009,41(4):31-36. (XIE Ni, ZOU Weilie, YAN Qiurong, et al. Experimental research on response of a loess subgrade slope to artificial rainfall[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(4): 31-36. (in Chinese)

    XIE Ni, ZOU Weilie, YAN Qiurong, et al. Experimental research on response of a loess subgrade slope to artificial rainfall[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(4): 31-36. (in Chinese))
    [12] 刘德仁, 张文清, 黄新智, 等. 非饱和黄土边坡水热变化过程室内模型试验研究[J]. 岩土力学,2017,38(增刊2):236-240. (LIU Deren, ZHANG Wenqing, HUANG Xinzhi, et al. Laboratory model test on water and heat variation process of unsaturated loess slope[J]. Rock and Soil Mechanics, 2017, 38(Suppl2): 236-240. (in Chinese) doi:  10.16285/j.rsm.2017.S2.033

    LIU Deren, ZHANG Wenqing, HUANG Xinzhi, et al. Laboratory model test on water and heat variation process of unsaturated loess slope[J]. Rock and Soil Mechanics, 2017, 38(Suppl2): 236-240. (in Chinese)) doi:  10.16285/j.rsm.2017.S2.033
    [13] 米文静, 张爱军, 刘争宏, 等. 黄土自重湿陷变形的多地层离心模型试验方法[J]. 岩土工程学报,2020,42(4):678-687. (MI Wenjing, ZHANG Aijun, LIU Zhenghong, et al. Multi-stratigraphic centrifugal model test method for determination of self-weight collapsible deformation of loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 678-687. (in Chinese)

    MI Wenjing, ZHANG Aijun, LIU Zhenghong, et al. Multi-stratigraphic centrifugal model test method for determination of self-weight collapsible deformation of loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 678-687. (in Chinese))
    [14] 唐海行, 苏逸深, 刘炳敖. 土壤包气带中气体对入渗水流运动影响的实验研究[J]. 水科学进展,1995,6(4):263-269. (TANG Haixing, SU Yishen, LIU Bingao. Laboratory study for influence of air on the infiltration flow in the soil unsaturated zone[J]. Advances in Water Science, 1995, 6(4): 263-269. (in Chinese) doi:  10.3321/j.issn:1001-6791.1995.04.001

    TANG Haixing, SU Yishen, LIU Bingao. Laboratory study for influence of air on the infiltration flow in the soil unsaturated zone[J]. Advances in Water Science, 1995, 6(4): 263-269. (in Chinese)) doi:  10.3321/j.issn:1001-6791.1995.04.001
    [15] 李援农. 土壤入渗中气相对水流运动影响的研究[J]. 干旱地区农业研究,2002,20(1):81-83. (LI Yuannong. The influence of soil air phases in infiltration on soil water current[J]. Agricultural Reseach in the Arid Areas, 2002, 20(1): 81-83. (in Chinese) doi:  10.3321/j.issn:1000-7601.2002.01.019

    LI Yuannong. The influence of soil air phases in infiltration on soil water current[J]. Agricultural Reseach in the Arid Areas, 2002, 20(1): 81-83. (in Chinese)) doi:  10.3321/j.issn:1000-7601.2002.01.019
    [16] 姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报,2012,34(1):65-74. (YAO Zhihua, HUANG Xuefeng, CHEN Zhenghan, et al. Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65-74. (in Chinese)

    YAO Zhihua, HUANG Xuefeng, CHEN Zhenghan, et al. Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65-74. (in Chinese))
    [17] 雷志栋, 杨诗秀, 谢霖传. 土壤水动力学[M]. 北京: 清华大学出饭社, 1988

    LEI Zhidong, YANG Shixiu, XIE Senchuan. Soil hydrodynamics[M]. Beijing: Tsinghua University Press, 1988. (in Chinese)
    [18] 李援农, 费良军. 土壤空气压力影响下的非饱和入渗格林-安姆特模型[J]. 水利学报,2005,36(6):733-736. (LI Yuannong, FEI Liangjun. Green-Ampt model for unsaturated infiltration affected by air pressure entrapped in soil[J]. Journal of Hydraulic Engineering, 2005, 36(6): 733-736. (in Chinese) doi:  10.3321/j.issn:0559-9350.2005.06.016

    LI Yuannong, FEI Liangjun. Green-Ampt model for unsaturated infiltration affected by air pressure entrapped in soil[J]. Journal of Hydraulic Engineering, 2005, 36(6): 733-736. (in Chinese)) doi:  10.3321/j.issn:0559-9350.2005.06.016
  • [1] 占鑫杰, 李文炜, 杨守华, 朱群峰, 许小龙, 黄慧兴.  振冲法加固堰塞体材料的室内模型试验研究 . 水利水运工程学报, doi: 10.12170/20211207002
    [2] 马斌, 刘永玺, 李会平, 刘东明, 姚烨.  窄深河谷近坝库岸滑坡涌浪特性及传播规律 . 水利水运工程学报, doi: 10.12170/20210416001
    [3] 刘明维, 朱晨浩, 阿比尔的, 陈珏, 刘耕, 吴文凤.  钢管混凝土嵌岩桩钢-混凝土联合承载规律试验研究 . 水利水运工程学报, doi: 10.12170/20200724002
    [4] 张劢捷, 杨文琦, 周成, 陈群, 李登华.  植被联合植筋带护坡水力特性模型试验 . 水利水运工程学报, doi: 10.12170/20200830005
    [5] 雷文凯, 董宏源, 陈攀, 吕海波, 梅国雄.  考虑倾角的土质边坡Green-Ampt改进入渗模型 . 水利水运工程学报, doi: 10.12170/20191027002
    [6] 杨喜涛, 王建华, 范怡飞.  砂土中钻井船插桩对邻近群桩影响的模型试验 . 水利水运工程学报, doi: 10.12170/20190316001
    [7] 李仁杰, 王旭, 张延杰, 李建东, 李泽源, 任军楠.  增湿重塑非饱和黄土时水-热运移规律研究 . 水利水运工程学报, doi: 10.12170/20190415001
    [8] 刘清君, 张晋勋, 孙天霆, 徐华, 王登婷, 李秦.  岛礁地形抛石护岸稳定性试验研究 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2019.05.009
    [9] 徐磊, 颜士开, 施伟, 王刚, 金玉杰, 周歆宇, 孙世宏.  虹吸式出水流道水力性能数值计算湍流模型适用性 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2019.04.006
    [10] 周成, 王一冰, 王涵, 谭昌明.  含砾土坡坡面降雨和坡脚浸泡模型试验研究 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2019.06.011
    [11] 陈诚, 夏云峰, 黄海龙, 王驰, 金捷, 周良平.  大型河工模型分布式表面流场测量系统研制及应用 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.01.003
    [12] 李建东, 王旭, 张延杰, 李凡, 李盛, 罗浩洋.  黄土地基地下连续墙基础竖向抗压特性试验研究 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.05.013
    [13] 贡金鑫, 高树飞, 陈浩群, 沈雪松.  桶式基础气压模型试验和有限元分析 . 水利水运工程学报,
    [14] 陈作强,宣国祥,黄岳,李君,金英.  渠江富流滩船闸输水系统水力学模型试验 . 水利水运工程学报,
    [15] 何进朝,母德伟.  嘉陵江土湾滩航道整治模型试验研究 . 水利水运工程学报,
    [16] 陈诚,贾宁一,蔡守允.  模型试验测量技术的研究应用现状及发展趋势 . 水利水运工程学报,
    [17] 赵建钧,程璐,冯春平.  循环水泵房侧向进水流道水力优化设计及模型试验 . 水利水运工程学报,
    [18] 李君,宣国祥,黄岳.  赣江石虎塘航运枢纽船闸输水系统水力学模型试验 . 水利水运工程学报,
    [19] 陈进,黄薇.  钢衬钢纤维混凝土背管结构研究 . 水利水运工程学报,
    [20] 徐连民,王兴然.  等向硬化类弹塑性本构模型的隐式应力积分算法 . 水利水运工程学报,
  • 加载中
图(11) / 表 (4)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-03

/

返回文章
返回