Study on the interactive relationship between water resources and industrial upgrading of the Yellow River Basin
-
摘要: 构建黄河流域水资源与产业升级综合评价指标体系,根据计算所得指数进行时空分析,运用面板向量自回归(PVAR)模型,通过格兰杰因果关系检验、脉冲响应与方差分解等方法,对黄河流域八省区2010—2019年水资源与产业升级的互动关系进行实证分析,提出相应对策建议。结果表明:(1)黄河流域八省区通过优化水资源利用方式难以促进产业结构调整,需要寻找新的发展驱动力,提高产业链附加值,构建现代化产业体系;(2)黄河流域八省区优化水资源利用对提高产业环境友好程度产生促进效应,应着力推动黄河流域水资源可持续利用,建立黄河流域生态补偿机制;(3)黄河流域八省区提高产业环境友好程度对改善水资源状态起积极作用,应大力发展可再生能源,提升产业绿色化水平,恢复水体状态。Abstract: The comprehensive evaluation index system of water resources and industrial upgrading of the Yellow River Basin was constructed. Based on the indices from index calculation, a spatio-temporal analysis was performed. Using PVAR model, with Granger causality test, impulse response and variance decomposition, the interaction between water resources and industrial upgrading of the eight provinces in the Yellow River Basin over the years 2010 to 2019 was empirically analyzed. According to the analysis results, the corresponding countermeasures and suggestions were proposed. The results indicated that: (1) It was difficult for the eight provinces in the Yellow River Basin to promote the industrial structure adjustment by optimizing the water resources utilization pattern. It was necessary to find new driving forces of development, enhance the added value of the industrial chain, and establish a modern industrial system; (2) The optimization of water resources utilization of the eight provinces in the Yellow River Basin had a promoting effect on enhancing the industrial environmental friendliness. Great efforts should be made to promote the sustainability of water resources utilization in the Yellow River Basin, and ecological compensation mechanism should be established; (3) The improvement of industrial environmental friendliness of the eight provinces in the Yellow River Basin played a positive role in improving the condition of water resources. Vigorous efforts should be made to develop renewable energy, promote the green level of industry, and restore the status of water resources.
-
Key words:
- Yellow River Basin /
- water resources /
- industrial upgrading /
- PVAR model
-
表 1 黄河流域八省区水资源与产业升级综合评价指标体系及权重
Table 1. Comprehensive evaluation index system and weight for water resources and industrial upgrading of the eight provinces in the Yellow River Basin
一级指标 二级指标 三级指标 指标代号 权重 指标性质 水资源 水资源状态 产水系数 WS1 0.123 1 + 人均水资源量/m3 WS2 0.302 2 + 水库蓄水量/亿m3 WS3 0.216 2 + 污径比 WS4 0.052 4 − 水资源开发利用程度/% WS5 0.306 1 + 水资源利用 农业用水量/亿m3 WU1 0.340 6 − 工业用水量/亿m3 WU2 0.221 0 − 万元GDP用水量/m3 WU3 0.130 2 − 万元工业增加值用水量/m3 WU4 0.140 9 − 城市工业用水重复利用率/% WU5 0.167 3 + 产业升级 产业结构 产业结构合理化指数 IS1 0.223 1 + 产业结构高级化指数 IS2 0.224 4 + 高新技术产业増加值占GDP比重/% IS3 0.307 4 + 服务业增加值占GDP比重/% IS4 0.245 0 + 产业环境友好 万元GDP工业废水排放量/t EF1 0.094 5 − 万元GDP能耗/(t标准煤) EF2 0.192 1 − 一般工业固体废物综合利用率/% EF3 0.285 6 + 一般工业固体废物处置率/% EF4 0.310 1 + 城市污水处理厂集中处理率/% EF5 0.117 7 + 注:“+”表示指标为正向指标,“−”表示指标为负向指标。 表 2 黄河流域八省区各变量方差分解结果
Table 2. The variance decomposition result of all variables in the eight provinces in the Yellow River Basin
变量 滞后期数 lnWS lnWU lnIS lnEF 变量 滞后期数 lnWS lnWU lnIS lnEF lnWS 10 0.928 0 0.010 0 0.024 0 0.039 0 lnIS 20 0.1250 0.130 0 0.646 0 0.099 0 lnWU 10 0.055 0 0.816 0 0.019 0 0.111 0 lnEF 20 0.113 0 0.015 0 0.056 0 0.816 0 lnIS 10 0.124 0 0.130 0 0.647 0 0.098 0 lnWS 30 0.925 0 0.010 0 0.024 0 0.041 0 lnEF 10 0.113 0 0.015 0 0.056 0 0.816 0 lnWU 30 0.055 0 0.814 0 0.019 0 0.112 0 lnWS 20 0.925 0 0.010 0 0.024 0 0.041 0 lnIS 30 0.125 0 0.130 0 0.646 0 0.099 0 lnWU 20 0.055 0 0.814 0 0.019 0 0.112 0 lnEF 30 0.113 0 0.015 0 0.056 0 0.816 0 -
[1] 刘建华, 黄亮朝. 黄河下游水资源利用与高质量发展关联评估[J]. 水资源保护,2020,36(5):24-30, 42 doi: 10.3880/j.issn.1004-6933.2020.05.004 LIU Jianhua, HUANG Liangchao. Evaluation of correlation between water resources utilization and high-quality development in the lower reaches of the Yellow River[J]. Water Resources Protection, 2020, 36(5): 24-30, 42. (in Chinese) doi: 10.3880/j.issn.1004-6933.2020.05.004 [2] 金菊良, 沈时兴, 张浩宇, 等. 基于全偏确定度的区域水资源承载力动态评价[J]. 水利水运工程学报,2019(6):38-49 doi: 10.12170/201906005 JIN Juliang, SHEN Shixing, ZHANG Haoyu, et al. Dynamic evaluation of regional water resources carrying capacity based on full partial certainty degree[J]. Hydro-Science and Engineering, 2019(6): 38-49. (in Chinese) doi: 10.12170/201906005 [3] LI Huan, HUANG Xianjin, JIN Yuze, et al. Population carrying capacity of water resources in the Yangtze River Economic Belt[J]. Economic Geography, 2017, 37(1): 181-186. [4] 张振龙, 孙慧. 新疆区域水资源对产业生态系统与经济增长的动态关联——基于VAR模型[J]. 生态学报,2017,37(16):5273-5284 ZHANG Zhenlong, SUN Hui. Research on the dynamic relationship between water-intensive industrial ecosystem and economic growth in Xinjiang based on VAR model[J]. Acta Ecologica Sinica, 2017, 37(16): 5273-5284. (in Chinese) [5] 刘建华, 岳铭睿. 黄河流域生态保护和高质量发展研究知识图谱分析[J]. 人民黄河,2021,43(7):7-12, 23 doi: 10.3969/j.issn.1000-1379.2021.07.002 LIU Jianhua, YUE Mingrui. Knowledge map analysis of ecological protection and high-quality development research of the Yellow River Basin[J]. Yellow River, 2021, 43(7): 7-12, 23. (in Chinese) doi: 10.3969/j.issn.1000-1379.2021.07.002 [6] 刘晶, 鲍振鑫, 刘翠善, 等. 近20年中国水资源及用水量变化规律与成因分析[J]. 水利水运工程学报,2019(4):31-41 doi: 10.12170/201904005 LIU Jing, BAO Zhenxin, LIU Cuishan, et al. Change law and cause analysis of water resources and water consumption in China in past 20 years[J]. Hydro-Science and Engineering, 2019(4): 31-41. (in Chinese) doi: 10.12170/201904005 [7] 王国庆, 乔翠平, 刘铭璐, 等. 气候变化下黄河流域未来水资源趋势分析[J]. 水利水运工程学报,2020(2):1-8 doi: 10.12170/20200216001 WANG Guoqing, QIAO Cuiping, LIU Minglu, et al. The future water resources regime of the Yellow River Basin in the context of climate change[J]. Hydro-Science and Engineering, 2020(2): 1-8. (in Chinese) doi: 10.12170/20200216001 [8] 刘建华, 黄亮朝, 左其亭. 黄河流域生态保护和高质量发展协同推进准则及量化研究[J]. 人民黄河,2020,42(9):26-33 doi: 10.3969/j.issn.1000-1379.2020.09.006 LIU Jianhua, HUANG Liangchao, ZUO Qiting. Synergetic promotion criteria and quantitative study of ecological protection and high-quality development of the Yellow River Basin[J]. Yellow River, 2020, 42(9): 26-33. (in Chinese) doi: 10.3969/j.issn.1000-1379.2020.09.006 [9] 卢丽文, 宋德勇. 长江经济带水污染密集型产业时空格局演变及影响因素研究[J]. 长江流域资源与环境,2020,29(12):2597-2606 LU Liwen, SONG Deyong. Temporal and spatial pattern evolution and influencing factors of water pollution intensive industry in the Yangtze River economic belt[J]. Resources and Environment in the Yangtze Basin, 2020, 29(12): 2597-2606. (in Chinese) [10] 徐银良, 王慧艳. 中国省域科技创新驱动产业升级绩效评价研究[J]. 宏观经济研究,2018(8):101-114, 158 XU Yinliang, WANG Huiyan. A study on performance evaluation of China’s provincial science and technology innovation drive industry upgrade[J]. Macroeconomics, 2018(8): 101-114, 158. (in Chinese) [11] ZHANG Z Y, ZHANG X L, SHI M J. Urban transformation optimization model: how to evaluate industrial structure under water resource constraints?[J]. Journal of Cleaner Production, 2018, 195: 1497-1504. doi: 10.1016/j.jclepro.2017.10.291 [12] 赵蕊. 水资源短缺对区域产业结构优化影响: 以榆林市为例[J]. 中国人口·资源与环境,2016,26(增刊1):333-335 ZHAO Rui. Influence of water resource shortage on regional industry structure optimization: a case study of Yulin[J]. China Population, Resources and Environment, 2016, 26(Suppl1): 333-335. (in Chinese) [13] 吴丹. 京津冀地区产业结构与水资源的关联性分析及双向优化模型构建[J]. 中国人口·资源与环境,2018,28(9):158-166 WU Dan. Correlation analysis and bidirectional optimization model of industrial structure and water resources in Beijing-Tianjin-Hebei region[J]. China Population, Resources and Environment, 2018, 28(9): 158-166. (in Chinese) [14] 张丽娜, 吴凤平, 张陈俊, 等. 流域水资源消耗结构与产业结构高级化适配性研究[J]. 系统工程理论与实践,2020,40(11):3009-3018 doi: 10.12011/1000-6788-2019-0016-10 ZHANG Lina, WU Fengping, ZHANG Chenjun, et al. The adaptability of basin water resources consumption structure and optimization of industrial structure[J]. Systems Engineering-Theory & Practice, 2020, 40(11): 3009-3018. (in Chinese) doi: 10.12011/1000-6788-2019-0016-10 [15] 任保平, 杜宇翔. 黄河流域经济增长-产业发展-生态环境的耦合协同关系[J]. 中国人口·资源与环境,2021,31(2):119-129 REN Baoping, DU Yuxiang. Coupling coordination of economic growth, industrial development and ecology in the Yellow River Basin[J]. China Population, Resources and Environment, 2021, 31(2): 119-129. (in Chinese) [16] 张丽娜, 徐洁, 庞庆华, 等. 水资源与产业结构高级化的适配度时空差异及动态演变[J]. 自然资源学报,2021,36(8):2113-2124 doi: 10.31497/zrzyxb.20210815 ZHANG Lina, XU Jie, PANG Qinghua, et al. Spatio-temporal differences and dynamic evolution of the adaptabilities between water resources and advanced industrial structure[J]. Journal of Natural Resources, 2021, 36(8): 2113-2124. (in Chinese) doi: 10.31497/zrzyxb.20210815 [17] 薛辰影, 方红远, 吉久伟. 水资源承载力评价指标约简方法研究[J]. 南水北调与水利科技,2019,17(3):23-30, 78 XUE Chenying, FANG Hongyuan, JI Jiuwei. An index reduction method for water resources carrying capacity[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(3): 23-30, 78. (in Chinese) [18] 李强. 产业升级与生态环境优化耦合度评价及影响因素研究—来自长江经济带108个城市的例证[J]. 现代经济探讨,2017(10):71-78 doi: 10.3969/j.issn.1009-2382.2017.10.010 LI Qiang. Evaluation of coupling degree between industrial upgrading and ecological environment optimization and its influencing factors: A case study from 108 cities in the Yangtze River Economic Belt[J]. Modern Economic Research, 2017(10): 71-78. (in Chinese) doi: 10.3969/j.issn.1009-2382.2017.10.010 [19] 马骏, 周盼超. 产业升级对提升长江经济带生态效率的空间效应研究[J]. 南京工业大学学报(社会科学版),2020,19(2):73-88, 112 MA Jun, ZHOU Panchao. How does industrial structure upgrading improve eco-efficiency in Yangtze River economic zone[J]. Journal of Nanjing Tech University (Social Science Edition), 2020, 19(2): 73-88, 112. (in Chinese) [20] 周正柱. 基于熵权—G1法的区域商务成本综合评价比较研究[J]. 首都经济贸易大学学报,2015,17(5):37-46 doi: 10.3969/j.issn.1008-2700.2015.05.005 ZHOU Zhengzhu. Comparative study and comprehensive evaluation on regional business costs based on entropy and G1[J]. Journal of Capital University of Economics and Business, 2015, 17(5): 37-46. (in Chinese) doi: 10.3969/j.issn.1008-2700.2015.05.005 [21] 刘建华, 黄亮朝, 左其亭. 黄河下游经济-人口-资源-环境和谐发展水平评估[J]. 资源科学,2021,43(2):412-422 doi: 10.18402/resci.2021.02.18 LIU Jianhua, HUANG Liangchao, ZUO Qiting. Evaluation of harmonious development of economy-population-resource-environment in the lower reaches of the Yellow River[J]. Resources Science, 2021, 43(2): 412-422. (in Chinese) doi: 10.18402/resci.2021.02.18 -