留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模态柔度的软基水闸底板脱空范围识别

李火坤 涂源 龙思琪 方静 刘双平 邬鹏贞

李火坤,涂源,龙思琪,等. 基于模态柔度的软基水闸底板脱空范围识别[J]. 水利水运工程学报,2022(6):54-61. doi:  10.12170/20211008001
引用本文: 李火坤,涂源,龙思琪,等. 基于模态柔度的软基水闸底板脱空范围识别[J]. 水利水运工程学报,2022(6):54-61. doi:  10.12170/20211008001
(LI Huokun, TU Yuan, LONG Siqi, et al. Identification methods of floor void of sluice on soft foundation based on theory of modal flexibility[J]. Hydro-Science and Engineering, 2022(6): 54-61. (in Chinese)) doi:  10.12170/20211008001
Citation: (LI Huokun, TU Yuan, LONG Siqi, et al. Identification methods of floor void of sluice on soft foundation based on theory of modal flexibility[J]. Hydro-Science and Engineering, 2022(6): 54-61. (in Chinese)) doi:  10.12170/20211008001

基于模态柔度的软基水闸底板脱空范围识别

doi: 10.12170/20211008001
基金项目: 国家自然科学基金资助项目(52079061;51879126)
详细信息
    作者简介:

    李火坤(1981—),男,湖南长沙人,教授,博士,主要从事水工水力学与工程安全检测方面研究。E-mail:lihuokun@ncu.edu.cn

  • 中图分类号: TV662

Identification methods of floor void of sluice on soft foundation based on theory of modal flexibility

  • 摘要: 软土地基上的水闸极易出现地基不均匀沉降、渗透变形等问题,进而诱发水闸底板脱空等灾害,现有的软基水闸底板脱空动力学诊断方法虽能识别脱空范围,但由于采用的基本模态参数(固有频率和测点振型系数)对水闸底板脱空的敏感性还需进一步提高,因此探究不同模态参数及其衍生量对水闸底板脱空的影响规律,确定更为灵敏的水闸底板脱空动力学敏感特征量具有重要意义。以对结构损伤更敏感的模态柔度作为水闸底板脱空动力学敏感特征量,建立了水闸底板脱空描述数学模型,并以各测点前两阶模态柔度变化率,改进了水闸底板脱空控制参数与模态参数(模态柔度)之间的响应面数学代理模型,将水闸有限元模型相应工况下的模态参数(模态柔度)与响应面数学模型计算模态参数(模态柔度)的相对偏差作为目标函数,将水闸底板脱空参数反演转化为目标函数的求解。以3种典型水闸底板脱空工况为例进行了验证,脱空反演结果与实际脱空范围的相对误差显著减小。模型提高了水闸底板脱空反演的精度,为软基水闸底板脱空检测和诊断提供了一种可靠的方法。
  • 图  1  水闸底板地基脱空参数数学模型

    Figure  1.  Mathematical model diagram of void parameters of sluice floor

    图  2  水闸底板地基脱空参数示意

    Figure  2.  Schematic diagram of void parameters of sluice floor

    图  3  单孔实体水闸模型及测点布置

    Figure  3.  Model of single hole solid sluice and measuring points

    图  4  工况1实际脱空范围

    Figure  4.  Actual void range on conditions 1

    图  5  各工况典型测点柔度响应面精度

    Figure  5.  Response surface accuracy of modal flexibility of typical measuring points under different condition

    图  6  各工况下脱空识别区域与实际区域对比

    Figure  6.  Comparison of the void area between the identified and actual results under different conditions

    图  7  基于模态柔度与基于频率振型脱空识别对比

    Figure  7.  Comparison diagram of void identification based on modal flexibility and frequency mode

    表  1  有限元模型材料参数

    Table  1.   Material parameters of finite element model

    模型主要
    部位
    弹性模量/
    GPa
    密度/
    (kg·m−3
    泊松比弹性地基
    刚度/(N·m−3
    左闸墩 19.02 2 498 0.15 /
    右闸墩 20.19 2 506 0.15 /
    水闸底板 21.49 2 598 0.15 /
    软基 / / / 1.498×109
    下载: 导出CSV

    表  2  各工况脱空控制参数

    Table  2.   Void parameters under different conditions 单位:m

    工况d1d2d3d4d5d6d7d8d9d10
    1 0.10 0.40 0.58 0.38 0.23 / / / / /
    2 0.47 0.30 0.07 0.40 0.55 / / / / /
    3 0.10 0.40 0.58 0.38 0.23 0.11 0.36 0.55 0.27 0.19
    下载: 导出CSV

    表  3  各工况下脱空参数反演结果

    Table  3.   Inversion results of void parameters on different conditions 单位:m

    脱空参数工况1工况2工况3
    实际值反演值实际值反演值实际值反演值
    d1 0.10 0.111 1 0.47 0.479 0 0.10 0.130 0
    d2 0.40 0.391 6 0.30 0.311 0 0.40 0.360 0
    d3 0.58 0.591 6 0.07 0.083 0 0.58 0.530 0
    d4 0.38 0.374 3 0.40 0.380 2 0.38 0.380 0
    d5 0.23 0.226 7 0.55 0.556 0 0.23 0.210 0
    d6 / / / / 0.11 0.113 4
    d7 / / / / 0.36 0.357 1
    d8 / / / / 0.55 0.542 9
    d9 / / / / 0.27 0.211 8
    d10 / / / / 0.19 0.179 4
    下载: 导出CSV

    表  4  工况1脱空参数反演结果

    Table  4.   Inversion results of void parametersunder condition 1 单位:m

    脱空参数实际值基于模态柔度反演值基于频率振型反演值
    d10.100.111 10.213 1
    d20.400.391 60.304 5
    d30.580.591 60.433 1
    d40.380.374 30.526 7
    d50.230.226 70.261 7
    下载: 导出CSV
  • [1] 梁民阳, 吴兴龙. 浙东海塘上水闸病害成因分析及对策[J]. 中国农村水利水电,2006(7):107-108 doi:  10.3969/j.issn.1007-2284.2006.07.039

    LIANG Minyang, WU Xinglong. Cause and countermeasures of sluice disease in east sea of Zhejiang[J]. China Rural Water and Hydropower, 2006(7): 107-108. (in Chinese) doi:  10.3969/j.issn.1007-2284.2006.07.039
    [2] 张帆. 珠三角地区水闸软土基础沉降处理案例分析[J]. 西北水电,2007(2):50-51, 73 doi:  10.3969/j.issn.1006-2610.2007.02.016

    ZHANG Fan. Case analysis on soft foundation settlement of sluice gates in delta region around Pear River[J]. Northwest Hydropower, 2007(2): 50-51, 73. (in Chinese) doi:  10.3969/j.issn.1006-2610.2007.02.016
    [3] 何金平, 曹旭梅, 李绍文, 等. 基于安全监测的水闸健康诊断体系研究[J]. 水利水运工程学报,2018(5):1-7

    HE Jinping, CAO Xumei, LI Shaowen, et al. Analysis of sluice health diagnosis system based on safety monitoring[J]. Hydro-Science and Engineering, 2018(5): 1-7. (in Chinese)
    [4] 钟俊纪. 水闸软土地基沉降预测的主要方法[J]. 理论与现代化,2005(增刊1):132-133

    ZHONG Junji. Main methods of settlement prediction of sluice on soft foundation[J]. Theory and Modernization, 2005(Suppl1): 132-133. (in Chinese)
    [5] 陈富强, 杨光华, 黄致兴, 等. 某水闸桩基底板脱空案例分析及设计反思[J]. 建筑科学,2015,31(增刊2):197-203

    CHEN Fuqiang, YANG Guanghua, HUANG Zhixing, et al. The analysis and design reflections of a case of that voids beneath the pile foundation slab of a sluice[J]. Building Science, 2015, 31(Suppl2): 197-203. (in Chinese)
    [6] 陈仲策. 水闸基础处理方法探讨[J]. 中国防汛抗旱,2010,20(4):59-60, 71

    CHEN Zhongce. Discussion on foundation treatment method of sluice[J]. China Flood & Drought Management, 2010, 20(4): 59-60, 71. (in Chinese)
    [7] 陈鹦. 无损动态检测闸基隐患[J]. 大坝与安全,1994(1):40-46

    CHEN Ying. Non-destructive dynamic detection of hidden dangers of gate base[J]. Large Dam and Safety, 1994(1): 40-46. (in Chinese)
    [8] 黄锦林, 李火坤, 邓冰梅. 基于响应面理论的闸基底板脱空区域识别方法[J]. 中国水利水电科学研究院学报,2018,16(4):249-256

    HUANG Jinlin, LI Huokun, DENG Bingmei. Identification methods of sluice floor pavement area based on the theory of response surface[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(4): 249-256. (in Chinese)
    [9] 李火坤, 余杰, 王刚, 等. 软基水闸底板脱空动力学反演模型构建与试验验证[J]. 农业工程学报,2020,36(21):145-153 doi:  10.11975/j.issn.1002-6819.2020.21.018

    LI Huokun, YU Jie, WANG Gang, et al. Model construction of dynamic inversion and experimental verification for the void of sluice floor on the soft foundation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 145-153. (in Chinese) doi:  10.11975/j.issn.1002-6819.2020.21.018
    [10] BAKHSHIZADE A, ASHORY M R, MASOUMI M, et al. A non-model-based damage detection method using generalized flexibility matrix[C]∥International Operational Modal Analysis Conference. Denmark: Technical University of Denmark, 2011.
    [11] PANDEY A K, BISWAS M. Damage detection in structures using changes in flexibility[J]. Journal of Sound and Vibration, 1994, 169(1): 3-17. doi:  10.1006/jsvi.1994.1002
    [12] PANDEY A K, BISWAS M. Experimental verification of flexibility difference method for locating damage in structures[J]. Journal of Sound and Vibration, 1995, 184(2): 311-328. doi:  10.1006/jsvi.1995.0319
    [13] ZHAO J, DEWOLF J T. Sensitivity study for vibrational parameters used in damage detection[J]. Journal of Structural Engineering, 1999, 125(4): 410-416. doi:  10.1061/(ASCE)0733-9445(1999)125:4(410)
    [14] 杨秋伟, 刘济科. 工程结构损伤识别的柔度方法研究进展[J]. 振动与冲击,2011,30(12):147-153 doi:  10.3969/j.issn.1000-3835.2011.12.029

    YANG Qiuwei, LIU Jike. Structural damage identification with flexibility changed: a review[J]. Journal of Vibration and Shock, 2011, 30(12): 147-153. (in Chinese) doi:  10.3969/j.issn.1000-3835.2011.12.029
    [15] 王启明, 朱瑞虎, 王宁, 等. 基于模态柔度的高桩码头桩基损伤识别[J]. 水运工程,2020(10):46-51 doi:  10.3969/j.issn.1002-4972.2020.10.009

    WANG Qiming, ZHU Ruihu, WANG Ning, et al. Damage detection of pile foundation in high-pile wharf based on modal flexibility[J]. Port & Waterway Engineering, 2020(10): 46-51. (in Chinese) doi:  10.3969/j.issn.1002-4972.2020.10.009
  • [1] 徐静文, 李致, 苏晓栋, 何建新, 陈灿明.  走锚漂流船舶撞击下桥墩基桩损伤分析 . 水利水运工程学报, 2020, (5): 79-85. doi: 10.12170/20190905003
    [2] 许翔,杨敏.  挑跌流水垫塘透水底板水动力特性试验研究 . 水利水运工程学报, 2012, (2): 15-20.
    [3] 李武.  近海风力发电机桩基础的动力学分析 . 水利水运工程学报, 2011, (3): -.
    [4] 齐永正,赵维炳.  排水固结加固软基强度增长理论研究 . 水利水运工程学报, 2008, (2): -.
    [5] 杨令强,武甲庆,秦冰.  水闸与地基相互作用及底板的设计 . 水利水运工程学报, 2008, (1): 53-56.
    [6] 寇立夯,王琳,徐艳杰,金峰.  基于地震实测记录的二滩拱坝模态参数识别 . 水利水运工程学报, 2008, (3): -.
    [7] 陈峰,卢永金,吴维军,盛军.  苏州河河口水闸底板结构设计 . 水利水运工程学报, 2007, (2): 36-41.
    [8] 赖锡军,姜加虎,黄群.  漫滩河道洪水演算的水动力学模型 . 水利水运工程学报, 2005, (4): 29-35.
    [9] 张蔚.  平原河网的水动力学及泥沙模型研究 . 水利水运工程学报, 2004, (4): 70-74.
    [10] 张瑞凯.  三峡船闸末级闸首超长泄长廊道中阀门水力学关键问题研究(2):—事故运水关闭过程的阀门水动力学特性 . 水利水运工程学报, 2001, (2): 3-9.
    [11] 张瑞凯.  三峡船闸末级闸首超长泄水廊道中阀门水力学关键问题研究(2)——事故动水关闭过程的阀门水动力学特性 . 水利水运工程学报, 2001, (2): -.
    [12] ASD2000—结构动力学进展国际会议 . 水利水运工程学报, 2000, (2): -.
    [13] 包纲鉴,陈锦珍.  卷扬垂直升船机水动力学一些问题的探讨 . 水利水运工程学报, 1998, (4): -.
    [14] 沈珠江.  结构性粘土的非线性损伤力学模型 . 水利水运工程学报, 1993, (3): -.
    [15] 严根华,阎诗武.  水工弧形闸门动力特性的实验模态分析 . 水利水运工程学报, 1990, (3): -.
    [16] 方火浪.  粘弹性层状地基动力柔度系数的传递矩阵解法 . 水利水运工程学报, 1990, (2): -.
    [17] 娄炎.  真空排水预压法加固软基技术 . 水利水运工程学报, 1988, (2): -.
    [18] 赵颖,陈中一,柯仁群.  海洋平台模型模态分析与动力计算 . 水利水运工程学报, 1988, (1): -.
    [19] 林孔锱.  软基加固新技术探讨 . 水利水运工程学报, 1987, (1): -.
    [20] 王钦乐,翁义深,卞鼎光.  用排水砂井处理大官坂海堤软基 . 水利水运工程学报, 1982, (3): -.
  • 加载中
图(8) / 表 (4)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  7
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 网络出版日期:  2022-11-05
  • 刊出日期:  2022-12-15

/

返回文章
返回