Identification methods of floor void of sluice on soft foundation based on theory of modal flexibility
-
摘要: 软土地基上的水闸极易出现地基不均匀沉降、渗透变形等问题,进而诱发水闸底板脱空等灾害,现有的软基水闸底板脱空动力学诊断方法虽能识别脱空范围,但由于采用的基本模态参数(固有频率和测点振型系数)对水闸底板脱空的敏感性还需进一步提高,因此探究不同模态参数及其衍生量对水闸底板脱空的影响规律,确定更为灵敏的水闸底板脱空动力学敏感特征量具有重要意义。以对结构损伤更敏感的模态柔度作为水闸底板脱空动力学敏感特征量,建立了水闸底板脱空描述数学模型,并以各测点前两阶模态柔度变化率,改进了水闸底板脱空控制参数与模态参数(模态柔度)之间的响应面数学代理模型,将水闸有限元模型相应工况下的模态参数(模态柔度)与响应面数学模型计算模态参数(模态柔度)的相对偏差作为目标函数,将水闸底板脱空参数反演转化为目标函数的求解。以3种典型水闸底板脱空工况为例进行了验证,脱空反演结果与实际脱空范围的相对误差显著减小。模型提高了水闸底板脱空反演的精度,为软基水闸底板脱空检测和诊断提供了一种可靠的方法。Abstract: The sluice built on the soft soil foundation is prone to problems such as uneven foundation settlement and seepage deformation, which will induce disasters such as the sluice floor void. The existing soft foundation sluice floor vacancy dynamics diagnosis method can identify the void range. However, the sensitivity of the basic modal parameters (natural frequency and mode coefficient of the measuring point) to the sluice floor vacancy needs to be further improved. Therefore, the effect of different model parameters and their derivatives on the sluice floor vacancy needs to be further improved. To explore the influencing laws of different model parameters and their derivative quantities on the sluice floor vacancy, it is of great significance to determine the more sensitive characteristic quantities of venting dynamics of the sluice floor. The modal flexibility, which is more sensitive to structural damage, is taken as the sensitive characteristic of sluice floor void dynamics, and the mathematic model of sluice floor void description is established. The mathematical proxy model of response surface between sluice floor void control parameters and modal parameters (modal flexibility) is improved based on the change rate of the first two order modal flexibility of each measuring point. The relative deviation between the modal parameters (modal flexibility) of the sluice finite element model under corresponding working conditions and the modal parameters (modal flexibility) of the response surface mathematical model is taken as the objective function, and the sluice floor void parameter inversion is transformed into the solution of the objective function. The results show that the relative error between the inversion results and the actual void range is significantly reduced by taking three typical void conditions as examples. The model improves the accuracy of the inversion of sluice floor void and provides a reliable method for the detection and diagnosis of sluice floor void on soft foundation.
-
Key words:
- modal flexibility /
- dynamics parameters /
- damage identification /
- floor void /
- sluice on soft foundation
-
表 1 有限元模型材料参数
Table 1. Material parameters of finite element model
模型主要
部位弹性模量/
GPa密度/
(kg·m−3)泊松比 弹性地基
刚度/(N·m−3)左闸墩 19.02 2 498 0.15 / 右闸墩 20.19 2 506 0.15 / 水闸底板 21.49 2 598 0.15 / 软基 / / / 1.498×109 表 2 各工况脱空控制参数
Table 2. Void parameters under different conditions
单位:m 工况 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 1 0.10 0.40 0.58 0.38 0.23 / / / / / 2 0.47 0.30 0.07 0.40 0.55 / / / / / 3 0.10 0.40 0.58 0.38 0.23 0.11 0.36 0.55 0.27 0.19 表 3 各工况下脱空参数反演结果
Table 3. Inversion results of void parameters on different conditions
单位:m 脱空参数 工况1 工况2 工况3 实际值 反演值 实际值 反演值 实际值 反演值 d1 0.10 0.111 1 0.47 0.479 0 0.10 0.130 0 d2 0.40 0.391 6 0.30 0.311 0 0.40 0.360 0 d3 0.58 0.591 6 0.07 0.083 0 0.58 0.530 0 d4 0.38 0.374 3 0.40 0.380 2 0.38 0.380 0 d5 0.23 0.226 7 0.55 0.556 0 0.23 0.210 0 d6 / / / / 0.11 0.113 4 d7 / / / / 0.36 0.357 1 d8 / / / / 0.55 0.542 9 d9 / / / / 0.27 0.211 8 d10 / / / / 0.19 0.179 4 表 4 工况1脱空参数反演结果
Table 4. Inversion results of void parametersunder condition 1
单位:m 脱空参数 实际值 基于模态柔度反演值 基于频率振型反演值 d1 0.10 0.111 1 0.213 1 d2 0.40 0.391 6 0.304 5 d3 0.58 0.591 6 0.433 1 d4 0.38 0.374 3 0.526 7 d5 0.23 0.226 7 0.261 7 -
[1] 梁民阳, 吴兴龙. 浙东海塘上水闸病害成因分析及对策[J]. 中国农村水利水电,2006(7):107-108 doi: 10.3969/j.issn.1007-2284.2006.07.039 LIANG Minyang, WU Xinglong. Cause and countermeasures of sluice disease in east sea of Zhejiang[J]. China Rural Water and Hydropower, 2006(7): 107-108. (in Chinese) doi: 10.3969/j.issn.1007-2284.2006.07.039 [2] 张帆. 珠三角地区水闸软土基础沉降处理案例分析[J]. 西北水电,2007(2):50-51, 73 doi: 10.3969/j.issn.1006-2610.2007.02.016 ZHANG Fan. Case analysis on soft foundation settlement of sluice gates in delta region around Pear River[J]. Northwest Hydropower, 2007(2): 50-51, 73. (in Chinese) doi: 10.3969/j.issn.1006-2610.2007.02.016 [3] 何金平, 曹旭梅, 李绍文, 等. 基于安全监测的水闸健康诊断体系研究[J]. 水利水运工程学报,2018(5):1-7 HE Jinping, CAO Xumei, LI Shaowen, et al. Analysis of sluice health diagnosis system based on safety monitoring[J]. Hydro-Science and Engineering, 2018(5): 1-7. (in Chinese) [4] 钟俊纪. 水闸软土地基沉降预测的主要方法[J]. 理论与现代化,2005(增刊1):132-133 ZHONG Junji. Main methods of settlement prediction of sluice on soft foundation[J]. Theory and Modernization, 2005(Suppl1): 132-133. (in Chinese) [5] 陈富强, 杨光华, 黄致兴, 等. 某水闸桩基底板脱空案例分析及设计反思[J]. 建筑科学,2015,31(增刊2):197-203 CHEN Fuqiang, YANG Guanghua, HUANG Zhixing, et al. The analysis and design reflections of a case of that voids beneath the pile foundation slab of a sluice[J]. Building Science, 2015, 31(Suppl2): 197-203. (in Chinese) [6] 陈仲策. 水闸基础处理方法探讨[J]. 中国防汛抗旱,2010,20(4):59-60, 71 CHEN Zhongce. Discussion on foundation treatment method of sluice[J]. China Flood & Drought Management, 2010, 20(4): 59-60, 71. (in Chinese) [7] 陈鹦. 无损动态检测闸基隐患[J]. 大坝与安全,1994(1):40-46 CHEN Ying. Non-destructive dynamic detection of hidden dangers of gate base[J]. Large Dam and Safety, 1994(1): 40-46. (in Chinese) [8] 黄锦林, 李火坤, 邓冰梅. 基于响应面理论的闸基底板脱空区域识别方法[J]. 中国水利水电科学研究院学报,2018,16(4):249-256 HUANG Jinlin, LI Huokun, DENG Bingmei. Identification methods of sluice floor pavement area based on the theory of response surface[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(4): 249-256. (in Chinese) [9] 李火坤, 余杰, 王刚, 等. 软基水闸底板脱空动力学反演模型构建与试验验证[J]. 农业工程学报,2020,36(21):145-153 doi: 10.11975/j.issn.1002-6819.2020.21.018 LI Huokun, YU Jie, WANG Gang, et al. Model construction of dynamic inversion and experimental verification for the void of sluice floor on the soft foundation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 145-153. (in Chinese) doi: 10.11975/j.issn.1002-6819.2020.21.018 [10] BAKHSHIZADE A, ASHORY M R, MASOUMI M, et al. A non-model-based damage detection method using generalized flexibility matrix[C]∥International Operational Modal Analysis Conference. Denmark: Technical University of Denmark, 2011. [11] PANDEY A K, BISWAS M. Damage detection in structures using changes in flexibility[J]. Journal of Sound and Vibration, 1994, 169(1): 3-17. doi: 10.1006/jsvi.1994.1002 [12] PANDEY A K, BISWAS M. Experimental verification of flexibility difference method for locating damage in structures[J]. Journal of Sound and Vibration, 1995, 184(2): 311-328. doi: 10.1006/jsvi.1995.0319 [13] ZHAO J, DEWOLF J T. Sensitivity study for vibrational parameters used in damage detection[J]. Journal of Structural Engineering, 1999, 125(4): 410-416. doi: 10.1061/(ASCE)0733-9445(1999)125:4(410) [14] 杨秋伟, 刘济科. 工程结构损伤识别的柔度方法研究进展[J]. 振动与冲击,2011,30(12):147-153 doi: 10.3969/j.issn.1000-3835.2011.12.029 YANG Qiuwei, LIU Jike. Structural damage identification with flexibility changed: a review[J]. Journal of Vibration and Shock, 2011, 30(12): 147-153. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.12.029 [15] 王启明, 朱瑞虎, 王宁, 等. 基于模态柔度的高桩码头桩基损伤识别[J]. 水运工程,2020(10):46-51 doi: 10.3969/j.issn.1002-4972.2020.10.009 WANG Qiming, ZHU Ruihu, WANG Ning, et al. Damage detection of pile foundation in high-pile wharf based on modal flexibility[J]. Port & Waterway Engineering, 2020(10): 46-51. (in Chinese) doi: 10.3969/j.issn.1002-4972.2020.10.009 -