Assessment of water resources vulnerability and identification of its contribution factors in typical dry year in Henan Province
-
摘要: 水资源脆弱性评价是水安全的重要度量方式,水资源安全是区域可持续发展的基础。以河南省18个市区为研究单元,从自然条件、社会经济、供用耗水等3个子系统选取指标建立评价体系,运用熵权法、线性加权法求解其典型枯水年水资源脆弱性,从城市、区域、全省角度分析水资源子系统指数、脆弱性指数,并采用贡献度模型识别了水资源脆弱性主要贡献因子,以期为河南省水资源管理提供科学依据。结果表明:(1)整体上看,3个子系统水资源脆弱性指数大小排序为自然条件>供用耗水>社会经济;城市和区域的水资源子系统指数、脆弱性指数存在一定的差异,且有自西南向东北逐渐增大的趋势;全省水资源为Ⅲ级中等脆弱性。(2)18个市区及全省水资源脆弱性3个子系统贡献度排序为自然条件>供用耗水>社会经济;水资源脆弱性的主要贡献因子集中在自然条件子系统的4个指标。此外,社会经济子系统中的亩均化肥折纯量和供用耗水子系统中的人均综合用水量、亩均灌溉用水量也是主要贡献因子。最后,提出“多渠道供水,提高供水侧能力”“合理扩张城镇、优化人口经济结构,提高城市水平”“提高用水效率,节约用水”的差异化“降脆”策略,以实现水资源可持续发展。Abstract: Water resources vulnerability is an important measurement of water security and the basis of regional sustainable development. Taking Henan Province and its 18 cities as evaluation unit, the index system of water resources vulnerability evaluation was established by considering three subsystems of natural condition, social economy as well as water supply and consumption. Entropy Weight Method and Linear Weighting Method were used to calculate water resources vulnerability of typical dry year. The water resources subsystem index and vulnerability index were investigated from city, region to the entire province. The Contribution Model was applied to identify the principal contribution factors of water resources vulnerability in order to provide a scientific basis for water resources management in Henan Province. The results show that the subsystem indexes range from water resources natural condition index, water resources supply and consumption index, to water resources socio-economic index. And there exists a certain difference in water resources subsystem index and vulnerability index at different levels of urban cities, regions, and province with the both indexes increasing from southwest to northeast. The water resources vulnerability for the entire Henan Province is classified as Grade Ⅲ, which is medium vulnerability. The contribution of the three sub-systems to water resources, vulnerability for the main cities and the whole province follows a same rank order from natural condition, water supply and consumption condition, to social economic condition. The four indicators of the natural condition sub-system are principal contribution factors to water vulnerability. The per-mu chemical fertilizer conversion scalar in the socio-economic subsystem and the per-capita comprehensive water consumption and per-mu irrigation water consumption in the water-supply-consumption subsystem are also major contribution factors to water resources vulnerability. The three subsystems should take “multi-channel water supply, improving the capacity of water supply”,“rationally expanding cities and towns, optimizing population and economic structure, improving urban living and production level”,“improving water utilization efficiency, saving water”as the breakthrough points to achieve accurate “vulnerability reduction”, so as to guide the sustainable development of water resources.
-
Key words:
- water resources /
- vulnerability /
- contribution factor /
- water security /
- Henan Province
-
表 1 河南省水资源脆弱性评价指标
Table 1. Evaluation index of water resources vulnerability in Henan Province
子系统层 指标层 单位 权重 含义或计算式 自然条件(0.33) 年降水量距平绝对值(N1) % 0.285 年降水量与多年平均值的差距 产水系数*(N2) - 0.171 当年当地自产水资源量/降水量 产水模数*(N3) 万m3/km2 0.308 当年当地自产水资源量/区域面积 人均水资源量*(N4) m3/人 0.236 当年当地自产水资源量/总人口 社会经济(0.33) 人口密度(S1) 人/km2 0.084 人口/面积 GDP密度(S2) 元/m2 0.292 地区GDP/地区面积 城镇率(S3) - 0.189 城镇人口/总人口 亩均化肥折纯量(S4) kg/亩 0.161 年化肥折纯量/耕地面积 城市污水处理能力*(S5) - 0.138 污水处理量/污水排放量 建成区绿化覆盖度*(S6) - 0.065 建成区的绿化覆盖面积/建成区面积 百亩农用排灌动力机械功率*(S7) kW/百亩 0.071 农用排灌动力机械功率/百亩耕地 供用耗水(0.33) 人均综合用水量(U1) m3/人 0.143 社会经济用水总量/总人口 万元GDP用水量(U2) m3/万元 0.147 社会经济用水总量/万元GDP 亩均灌溉用水量(U3) m3/亩 0.179 农业用水量/耕地面积 城市人均日生活用水量(U4) L 0.146 - 耗水率(U5) - 0.113 耗水量/总用水量 供需比(U6) - 0.189 用水总量/当地自产水资源量 人均城市供水综合生产能力*(U7) 万m3/(人·日) 0.083 供水综合生产能力/用水人数 表 2 河南省水资源脆弱性指数及等级
Table 2. Water resources vulnerability index and grade in Henan Province
地区 城市 自然条件 社会经济 供用耗水 脆弱性 指数 等级 指数 等级 指数 等级 指数 等级 豫东 开封 0.521 3 0.434 3 0.575 3 0.509 Ⅲ 商丘 0.706 4 0.335 2 0.359 2 0.466 Ⅲ 周口 0.719 4 0.452 3 0.490 3 0.553 Ⅲ 均值 0.649 4 0.407 3 0.475 3 0.510 Ⅲ 豫西 洛阳 0.461 3 0.263 2 0.363 2 0.362 Ⅱ 三门峡 0.345 2 0.289 2 0.245 2 0.293 Ⅱ 均值 0.403 3 0.276 2 0.304 2 0.327 Ⅱ 豫南 南阳 0.806 5 0.216 2 0.391 2 0.470 Ⅲ 信阳 0.403 3 0.241 2 0.366 2 0.337 Ⅱ 驻马店 0.826 5 0.237 2 0.333 2 0.465 Ⅲ 均值 0.679 4 0.231 2 0.364 2 0.424 Ⅲ 豫北 安阳 0.710 4 0.417 3 0.597 3 0.574 Ⅲ 鹤壁 0.819 5 0.444 3 0.490 3 0.584 Ⅲ 新乡 0.800 5 0.523 3 0.694 4 0.672 Ⅳ 焦作 0.504 3 0.498 3 0.585 3 0.528 Ⅲ 濮阳 0.860 5 0.447 3 0.817 5 0.707 Ⅳ 济源 0.333 2 0.268 2 0.561 3 0.387 Ⅱ 均值 0.671 4 0.433 3 0.624 4 0.575 Ⅲ 豫中 郑州 0.736 4 0.713 4 0.391 2 0.613 Ⅳ 许昌 0.627 4 0.415 3 0.284 2 0.442 Ⅲ 漯河 0.436 3 0.479 3 0.233 2 0.382 Ⅱ 平顶山 0.717 4 0.430 3 0.232 2 0.459 Ⅲ 均值 0.629 4 0.509 3 0.285 2 0.474 Ⅲ 全省 0.680 4 0.372 2 0.420 3 0.490 Ⅲ 表 3 河南省指标层、子系统层对水资源脆弱性的贡献度
Table 3. The contribution degree of water resources vulnerability at index level and subsystem level in Henan Province
单位:% 子系统层 指标层 开封 商丘 周口 洛阳 三门峡 南阳 信阳 驻马店 安阳 鹤壁 自然条件 N1 12.3 11.9 15.2 0 1.4 16.8 26.1 20.4 10.8 13.2 N2 4.1 10.3 6.5 14.9 17.4 12.1 10.7 10.9 6.3 7.2 N3 6.4 14.5 10.2 14.8 20.5 17.8 1.5 16.1 12.6 14.3 N4 11.2 13.8 11.4 12.7 0 10.4 1.6 11.7 11.5 12.0 合计 34.1 50.4 43.3 42.4 39.3 57.0 39.9 59.2 41.2 46.7 社会经济 S1 3.8 4.5 4.4 2.2 0 1.6 2.2 2.7 3.3 3.0 S2 3.1 2.0 1.6 3.7 0 0.1 0.1 0.7 1.9 3.7 S3 2.4 0.2 0 8.4 9.4 1.5 2.8 0.1 3.2 6.0 S4 5.0 11.4 8.3 1.4 0 4.5 1.2 5.5 8.8 2.1 S5 9.0 2.6 6.3 0 8.4 0.5 9.2 2.0 3.3 7.6 S6 2.5 0 3.1 4.0 7.4 2.1 1.5 0.9 1.9 1.4 S7 2.5 3.3 3.6 4.4 7.6 5.0 6.7 5.1 1.7 1.6 合计 28.4 23.9 27.2 24.2 32.9 15.3 23.9 17.0 24.2 25.3 供用耗水 U1 8.0 2.5 2.7 4.2 2.9 4.2 9.6 0 4.7 4.7 U2 6.8 4.6 5.0 2.1 2.3 6.6 11.0 2.3 5.6 3.3 U3 4.9 1.9 3.3 10.1 5.0 5.9 5.2 0 5.4 5.5 U4 4.7 1.2 5.7 5.6 3.3 0.5 1.2 8.1 8.5 0 U5 5.4 7.3 6.4 3.0 6.1 3.3 0.6 7.9 6.3 6.4 U6 4.5 3.1 2.8 2.1 0 2.1 1.3 0.9 4.2 5.2 U7 3.3 5.1 3.6 6.3 8.2 5.0 7.1 4.6 0 2.7 合计 37.6 25.6 29.5 33.4 27.9 27.7 36.2 23.9 34.6 28.0 子系统层 指标层 新乡 焦作 濮阳 济源 郑州 许昌 漯河 平顶山 全省 自然条件 N1 12.3 14.9 7.7 5.2 7.3 11.9 15.3 15.4 13.5 N2 5.3 0 7.6 9.3 7.8 8.8 6.3 10.4 9.2 N3 11.9 5.0 14.5 7.4 12.0 11.3 0 13.1 12.0 N4 10.1 11.9 10.7 6.8 12.8 15.3 16.4 13.1 11.6 合计 39.7 31.8 40.5 28.6 40.0 47.3 38.0 52.0 46.2 社会经济 S1 2.6 4.3 3.3 1.3 4.5 5.7 7.3 3.4 2.9 S2 2.2 7.0 2.3 3.9 15.9 8.4 8.3 2.4 2.6 S3 3.2 6.5 0.7 10.3 10.2 4.6 5.2 5.0 3.7 S4 8.0 8.5 6.9 1.1 1.7 2.4 9.8 11.0 6.0 S5 6.1 1.3 6.0 2.1 3.1 4.3 4.8 3.3 4.0 S6 2.2 2.0 1.9 2.7 2.1 2.6 2.7 2.5 2.6 S7 1.6 1.7 0 1.7 1.4 3.3 3.5 3.5 3.5 合计 25.9 31.4 21.0 23.1 38.8 31.3 41.7 31.2 25.3 供用耗水 U1 5.8 8.0 6.8 11.8 2.2 2.5 1.4 2.5 4.2 U2 5.1 3.8 6.9 3.9 0 1.1 1.6 3.4 3.5 U3 6.7 10.2 5.6 15.4 2.9 1.0 0.6 1.2 4.2 U4 3.8 3.6 5.7 6.6 4.1 4.1 4.6 4.5 5.9 U5 5.4 5.3 2.9 5.1 1.2 4.8 5.4 0 4.5 U6 5.2 5.5 8.9 2.7 6.3 3.8 2.6 2.5 2.8 U7 2.5 0.4 1.6 2.8 4.5 4.1 4.1 2.7 3.5 合计 34.4 36.9 38.5 48.3 21.2 21.4 20.3 16.8 28.6 注:加方框数值表示指标贡献度排名前5,对应因子为主要贡献因子;数值0表示因子贡献度小于0.1。 -
[1] 夏军, 邱冰, 潘兴瑶, 等. 气候变化影响下水资源脆弱性评估方法及其应用[J]. 地球科学进展,2012,27(4):443-451 XIA Jun, QIU Bing, PAN Xingyao, et al. Assessment of water resources vulnerability under climate change and human activities[J]. Advances in Earth Science, 2012, 27(4): 443-451. (in Chinese) [2] 李原园, 曹建廷, 沈福新, 等. 1956—2010年中国可更新水资源量的变化[J]. 中国科学:地球科学,2014,44(9):2030-2038 LI Yuanyuan, CAO Jianting, SHEN Fuxin, et al. The changes of renewable water resources in China during 1956—2010[J]. Science China: Earth Sciences, 2014, 44(9): 2030-2038. (in Chinese) [3] 王国庆, 乔翠平, 刘铭璐, 等. 气候变化下黄河流域未来水资源趋势分析[J]. 水利水运工程学报,2020(2):1-8 doi: 10.12170/20200216001 WANG Guoqing, QIAO Cuiping, LIU Minglu, et al. The future water resources regime of the Yellow River basin in the context of climate change[J]. Hydro-Science and Engineering, 2020(2): 1-8. (in Chinese) doi: 10.12170/20200216001 [4] PLUMMER R, DE LOË R, ARMITAGE D. A systematic review of water vulnerability assessment tools[J]. Water Resources Management, 2012, 26(15): 4327-4346. doi: 10.1007/s11269-012-0147-5 [5] SULLIVAN C A. Quantifying water vulnerability: a multi-dimensional approach[J]. Stochastic Environmental Research and Risk Assessment, 2011, 25(4): 627-640. doi: 10.1007/s00477-010-0426-8 [6] A1-SAIDI M, BIRNBAUM D, BURITI R, et al. Water resources vulnerability assessment of MENA countries considering energy and virtual water interactions[J]. Procedia Engineering, 2016, 145: 900-907. doi: 10.1016/j.proeng.2016.04.117 [7] KAZAKIS N, VOUDOURIS K S. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: modifying the DRASTIC method using quantitative parameters[J]. Journal of Hydrology, 2015, 525: 13-25. doi: 10.1016/j.jhydrol.2015.03.035 [8] CHEN Y, FENG Y Z, ZHANG F, et al. Assessing water resources vulnerability by using a rough set cloud model: a case study of the Huai River basin, China[J]. Entropy, 2018, 21(1): 14. doi: 10.3390/e21010014 [9] 黄垒, 张礼中, 朱吉祥, 等. 基于综合指数法的保定市地表水资源脆弱性评价[J]. 南水北调与水利科技,2018,16(6):68-73 HUANG Lei, ZHANG Lizhong, ZHU Jixiang, et al. Evaluation of vulnerability of surface water resources in Baoding based on comprehensive index method[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(6): 68-73. (in Chinese) [10] 潘争伟, 吴成国, 周玉良, 等. 基于集对指数势的流域水资源系统脆弱性影响因子分析[J]. 水电能源科学,2014,32(3):39-43 PAN Zhengwei, WU Chengguo, ZHOU Yuliang, et al. Driving factors analysis of basin water resources system vulnerability based on set pair exponential potential[J]. Water Resources and Power, 2014, 32(3): 39-43. (in Chinese) [11] 夏军, 李原园. 气候变化影响下中国水资源的脆弱性与适应对策[M]. 北京: 科学出版社, 2016. XIA Jun, LI Yuanyuan. Vulnerability and adaptation countermeasures of water resources in China under the influence of climate change[M]. Beijing: Science Press, 2016. (in Chinese) [12] 徐娜. 流域水资源脆弱性评价和适应性管理[D]. 南京: 南京林业大学, 2018. XU Na. Water resources vulnerability assessment and adaptive management in river basins[D]. Nanjing: Nanjing Forestry University, 2018. (in Chinese) [13] TAN S, YANG J, YAN J Y, et al. A holistic low carbon city indicator framework for sustainable development[J]. Applied Energy, 2017, 185: 1919-1930. doi: 10.1016/j.apenergy.2016.03.041 [14] 朱怡娟. 武汉市水资源脆弱性评价研究[D]. 武汉: 华中师范大学, 2015. ZHU Yijuan. Evaluation on water resources vulnerability of Wuhan city[D]. Wuhan: Central China Normal University, 2015. (in Chinese) [15] 职璐爽, 薛惠锋. 基于熵权法的城市水资源脆弱性研究——以广东省为例[J]. 水土保持通报,2018,38(5):322-329 ZHI Lushuang, XUE Huifeng. A study on vulnerability of urban water resource based on entropy weight method—A case study of Guangdong Province[J]. Bulletin of Soil and Water Conservation, 2018, 38(5): 322-329. (in Chinese) [16] 原彩萍, 刘原一, 职璐爽. 基于模糊集对法的山西省水资源脆弱性评价[J]. 水资源保护,2021,37(5):112-116, 130 YUAN Caiping, LIU Yuanyi, ZHI Lushuang. Water resources vulnerability assessment in Shanxi Province based on fuzzy set pair method[J]. Water Resources Protection, 2021, 37(5): 112-116, 130. (in Chinese) [17] 刘欢. 人水关系的和谐辨识方法及应用研究[D]. 郑州: 郑州大学, 2016. LIU Huan. Research on identification methods and applications for harmony of human-water relationship[D]. Zhengzhou: Zhengzhou University, 2016. (in Chinese) [18] 杨俊, 关莹莹, 李雪铭, 等. 城市边缘区生态脆弱性时空演变——以大连市甘井子区为例[J]. 生态学报,2018,38(3):778-787 YANG Jun, GUAN Yingying, LI Xueming, et al. Urban fringe area ecological vulnerability space-time evolution research: the case of Ganjingzi District, Dalian[J]. Acta Ecologica Sinica, 2018, 38(3): 778-787. (in Chinese) [19] 张立江, 汪景宽, 裴久渤, 等. 东北典型黑土区耕地地力评价与障碍因素诊断[J]. 中国农业资源与区划,2017,38(1):110-117 ZHANG Lijiang, WANG Jingkuan, PEI Jiubo, et al. Evaluation of cultivated land fertility and its obstacle factores diagnosis in the typical black soil area of northeast China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(1): 110-117. (in Chinese) [20] 徐晗. 基于熵权法的陕西省农业干旱脆弱性评价及影响因子识别[J]. 干旱地区农业研究,2016,34(3):198-205 doi: 10.7606/j.issn.1000-7601.2016.03.32 XU Han. Assessment of agricultural drought vulnerability and identification of influencing factors based on the entropy weight method[J]. Agricultural Research in the Arid Areas, 2016, 34(3): 198-205. (in Chinese) doi: 10.7606/j.issn.1000-7601.2016.03.32 [21] 马骏, 李昌晓, 魏虹, 等. 三峡库区生态脆弱性评价[J]. 生态学报,2015,35(21):7117-7129 MA Jun, LI Changxiao, WEI Hong, et al. Dynamic evaluation of ecological vulnerability in the Three Gorges Reservoir Region in Chongqing municipality, China[J]. Acta Ecologica Sinica, 2015, 35(21): 7117-7129. (in Chinese) -