Comprehensive analysis for leakage cause of the entry and outlet sections of the water-conveyance crossing structures
-
摘要: 输水交叉建筑物进出口段渗流异常成因存在不确定性。采用综合分析方法探讨某长距离调水工程一跨河渡槽出口段裹头渗漏的成因。在巡视检查和加固处理等资料分析的基础上,构建统计模型,定量分析渐变段渗透压力和底板扬压力与渠道水位、气温、降雨量等环境量的关系,判断渗流的主要影响因素;通过变形监测资料分析,结合工程地质和水文地质条件,判断引起裹头渗漏的原因;进而依据流场法、探地雷达和高密度电阻率法等地球物理探测方法揭示渗漏入口和通道等。综合分析认为,渗漏从渐变段末端结构缝进入,通过渐变段、闸室段和连接段的砂砾石层基础向裹头侧流出。考虑到该调水工程常年运行,渡槽难以停水检修,提出在闸室段增加灌浆帷幕截断渗流通道的防渗加固处置建议方案。采用的综合分析方法可为同类工程问题分析和处理提供参考。Abstract: There is uncertainty for the cause of the abnormal seepage flow in the entry and outlet sections of the water-conveyance crossing structures. A comprehensive analysis method was proposed to explore the leakage cause in the outlet section of a cross-river aqueduct in a long-distance water transfer project in this research. First, the operation management data such as patrol inspection and reinforcement measure were analyzed. A statistical model was constructed to quantitatively analyze the relationship between the seepage pressure in the transition section and the uplift pressure beneath the sluice chamber, and the cannel water level, temperature, rainfall and other environmental variables. The main influencing factors of the seepage variables were preliminarily judged by the above-mentioned qualitative and quantitative analysis. Second, considering the engineering geology and hydrogeological conditions, the leakage cause of the protective structure could be further judged through the analysis of the surface deformation monitoring data. Then the leakage entrance and leakage channel was revealed based on several geophysical detection methods such as flow field method, ground penetrating radar and high-density resistivity method. Finally, according to the comprehensive analysis, it was found concluded that the leakage entered from the structural joints at the end of the transition section, and leaked out to the protective structure through the sand and gravel layer foundation of the transition section, the sluice chamber section and the connecting section. Considering the long-term operation of the water transfer project, it was difficult to stop water transfer for the aqueduct maintenance. Therefore, the anti-seepage reinforcement treatment plan, namely adding a grouting curtain to block the seepage channel beneath the sluice chamber, was proposed. The adopted comprehensive analysis method can provide reference for the analysis and treatment of similar engineering problems.
-
表 1 测压管和渗压计与渠道水位间的灰色关联度
Table 1. Grey correlation degrees between piezometers and cannel water level
测点 BV03 BV09 BV12 BV15 BV16 P11 P12 渠道水位 BV03 1.000 0.888 0.770 0.694 0.889 0.858 0.825 0.401 BV09 1.000 0.610 0.653 0.770 0.790 0.872 0.348 BV12 1.000 0.609 0.700 0.682 0.632 0.349 BV15 1.000 0.778 0.745 0.724 0.502 BV16 1.000 0.933 0.857 0.447 P11 1.000 0.849 0.404 P12 1.000 0.344 渠道水位 1.000 表 2 各渗流测点统计模型的复相关系数及变量的相对影响
Table 2. Multiple correlation coefficients of statistical models of piezometers and relative influences of variables
测点 复相关系数 各变量相对影响/% 渠道水位 气温 降雨量 时效 BV03 0.89 6.21 66.52 0.08 27.18 BV15 0.91 3.66 21.04 0.18 75.11 BV16 0.90 4.05 66.79 0.10 29.06 P11 0.89 9.37 66.91 0.07 23.65 P12 0.89 11.69 52.82 0.34 35.15 -
[1] 程德虎, 苏霞. 南水北调中线干线工程技术进展与需求[J]. 中国水利,2018(10):24-27, 34 doi: 10.3969/j.issn.1000-1123.2018.10.011 CHENG Dehu, SU Xia. Technical advancement and demand of middle route scheme of South-to-North Water Diversion Project[J]. China Water Resources, 2018(10): 24-27, 34. (in Chinese) doi: 10.3969/j.issn.1000-1123.2018.10.011 [2] 宋轩, 刘恒, 耿雷华, 等. 南水北调中线工程交叉建筑物风险识别[J]. 南水北调与水利科技,2009,7(4):13-15 doi: 10.3969/j.issn.1672-1683.2009.04.004 SONG Xuan, LIU Heng, GENG Leihua, et al. Risk identification for crossing structures in the middle route of the South-to-North Water Transfer Project[J]. South-to-North Water Transfers and Water Sciences & Technology, 2009, 7(4): 13-15. (in Chinese) doi: 10.3969/j.issn.1672-1683.2009.04.004 [3] 王志刚. 南水北调渠道倒虹吸进出口渐变段变形处理[J]. 水科学与工程技术,2011(6):67-68 doi: 10.3969/j.issn.1672-9900.2011.06.026 WANG Zhigang. Deformation treatment of South-to-North Water Diversion Project inverted siphon export transition section[J]. Water Sciences and Engineering Technology, 2011(6): 67-68. (in Chinese) doi: 10.3969/j.issn.1672-9900.2011.06.026 [4] 胡江, 马福恒, 盛金保, 等. 长距离引调水工程安全鉴定机制探讨[J]. 中国水利,2021(8):46-48 doi: 10.3969/j.issn.1000-1123.2021.08.026 HU Jiang, MA Fuheng, SHENG Jinbao, et al. Discussion on safety appraisal regulation of long-distance water diversion project[J]. China Water Resources, 2021(8): 46-48. (in Chinese) doi: 10.3969/j.issn.1000-1123.2021.08.026 [5] 盛金保, 谢晓华, 李雷. 株树桥水库大坝严重渗漏原因分析[J]. 水利水运工程学报,2003(4):25-30 doi: 10.3969/j.issn.1009-640X.2003.04.005 SHENG Jinbao, XIE Xiaohua, LI Lei. Serious leakage analysis for Zhushuqiao Dam[J]. Hydro-Science and Engineering, 2003(4): 25-30. (in Chinese) doi: 10.3969/j.issn.1009-640X.2003.04.005 [6] 包腾飞, 顾冲时, 吴中如. 李家峡大坝6号坝段坝基扬压力异常成因综合分析[J]. 岩土工程学报,2008,30(10):1460-1466 doi: 10.3321/j.issn:1000-4548.2008.10.007 BAO Tengfei, GU Chongshi, WU Zhongru. Analysis of uplift pressure anomaly of Lijiaxia Dam foundation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1460-1466. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.007 [7] 刘建刚, 洪光森. 混凝土重力坝的渗漏及示踪探测研究[J]. 勘察科学技术,2009(5):21-24, 56 LIU Jiangang, HONG Guangsen. Study on leakage and tracing detection of concrete gravity dam[J]. Site Investigation Science and Technology, 2009(5): 21-24, 56. (in Chinese) [8] 宋汉周, 赖诗坤, 童海涛. 探讨大坝基础局部扬压力异常机理的综合分析方法[J]. 水力发电学报,2003(4):60-66 doi: 10.3969/j.issn.1003-1243.2003.04.009 SONG Hanzhou, LAI Shikun, TONG Haitao. Synthetic analysis applied to the mechanism of local uplift anomaly on dam foundation[J]. Journal of Hydroelectric Engineering, 2003(4): 60-66. (in Chinese) doi: 10.3969/j.issn.1003-1243.2003.04.009 [9] HU J, MA F H. Comprehensive investigation method for sudden increases of uplift pressures beneath gravity dams: case study[J]. Journal of Performance of Constructed Facilities, 2016, 30(5): 04016023. doi: 10.1061/(ASCE)CF.1943-5509.0000874 [10] HU J, MA F H, WU S H. Comprehensive investigation of leakage problems for concrete gravity dams with penetrating cracks based on detection and monitoring data: a case study[J]. Structural Control and Health Monitoring, 2018, 25(4): e2127. doi: 10.1002/stc.2127 [11] 任秋兵, 李明超, 沈扬, 等. 耦合时空相关特性的大坝变形动态监控模型[J]. 水力发电学报,2021,40(10):160-172 doi: 10.11660/slfdxb.20211015 REN Qiubing, LI Mingchao, SHEN Yang, et al. Dynamic monitoring model for dam deformation with spatiotemporal coupling correlation characteristics[J]. Journal of Hydroelectric Engineering, 2021, 40(10): 160-172. (in Chinese) doi: 10.11660/slfdxb.20211015 [12] 顾冲时, 吴中如. 大坝与坝基安全监控理论和方法及其应用[M]. 南京: 河海大学出版社, 2006. GU Chongshi, WU Zhongru. Safety monitoring of dams and dam foundations: theories & methods and their application[M]. Nanjing: Hohai University Press, 2006. (in Chinese) [13] 张建清, 徐磊, 李鹏, 等. 综合物探技术在大坝渗漏探测中的试验研究[J]. 地球物理学进展,2018,33(1):432-440 doi: 10.6038/pg2018BB0087 ZHANG Jianqing, XU Lei, LI Peng, et al. Experimental study on comprehensive geophysical prospecting technology in dam leakage detection[J]. Progress in Geophysics, 2018, 33(1): 432-440. (in Chinese) doi: 10.6038/pg2018BB0087 [14] 刘康和, 童广伟, 阎建维, 等. 渗漏探测分析与应用[J]. 三峡大学学报(自然科学版), 2019, 41(增刊1): 193-197. LIU Kanghe, TONG Guangwei, YAN Jianwei, et al. The analysis and application of leakage detection[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(Suppl1): 193-197. (in Chinese) -