留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

洞庭湖区超标准洪水数值模拟研究

杨炳辉 施勇 栾震宇 金秋

杨炳辉,施勇,栾震宇,等. 洞庭湖区超标准洪水数值模拟研究[J]. 水利水运工程学报. doi:  10.12170/20211029002
引用本文: 杨炳辉,施勇,栾震宇,等. 洞庭湖区超标准洪水数值模拟研究[J]. 水利水运工程学报. doi:  10.12170/20211029002
(YANG Binghui, SHI Yong, LUAN Zhenyu, et al. Study on super-standard flood situation in Dongting Lake area[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20211029002
Citation: (YANG Binghui, SHI Yong, LUAN Zhenyu, et al. Study on super-standard flood situation in Dongting Lake area[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20211029002

洞庭湖区超标准洪水数值模拟研究

doi: 10.12170/20211029002
基金项目: 国家重点研发计划项目(2017YFC0405300);湖南省水利科技重大项目(湘水科计[2017]230-30);广西重点研发计划项目(2018AB36010)
详细信息
    作者简介:

    杨炳辉(1996—),男,河南焦作人,硕士研究生,主要从事洪水水动力学方向的研究。E-mail:531869381@qq.com

    通讯作者:

    施 勇(E-mail:yshi@nhri.cn

  • 中图分类号: TV122

Study on super-standard flood situation in Dongting Lake area

  • 摘要: 洞庭湖区是我国洪涝灾害频发的地区之一,随着近些年来极端天气越来越频繁,研究洞庭湖区在遭遇历史极端洪水下的防洪形势极具现实意义。以1870年、1935年、1954年长江洪水为研究对象,通过建立长江、洞庭湖及蓄滞洪区一二维耦合水动力模型,在现有地形及工程措施条件下,对洞庭湖区的水位及超额洪量进行模拟计算。 结果表明:三峡及上游水库群补偿调度条件下,若遭遇1870、1935、1954年洪水,荆江附近区及城陵矶附近区的超额洪量大幅下降,再结合荆江地区及城陵矶附近区蓄滞洪区的运用,洞庭湖区可安全度汛。三峡水库调蓄使枝城洪峰流量大幅下降,三口洪峰流量也随之下降,洞庭湖区各站水位有所降低;蓄滞洪区分洪运用降低了莲花塘水位,荆江水面比降加大,三口洪峰流量进一步下降,受上游来水减少及下游水位降低,湖区水位进一步下降。通过定量预测特大洪水长江中游及洞庭湖区防洪情势,为洞庭湖治理提供科学依据,对提升湖区防洪减灾管理能力奠定基础。
  • 图  1  模型范围

    Figure  1.  Model scope

    图  2  2016年部分测站率定

    Figure  2.  Calibration of some stations in 2016

    图  3  实测洪水与模拟洪水水位流量验证

    Figure  3.  Verification of measured flood and simulated flood level and discharge

    图  4  1870、1935、1954年宜昌来流过程

    Figure  4.  The inflow process of Yichang in 1870, 1935 and 1954

    表  1  计算最大30天洪量

    Table  1.   Calculation of maximum 30-day flood volume

    典型年起始时间起始水位/m(莲花塘)宜昌/亿m3螺山/亿m3汉口/亿m3宜汉区间/亿m3
    1954 7月22日 33.31 1 386 1 837 2 041 719
    1870 7月14日 29.78 1 650 1 874 2 042 569
    1935 6月26日 29.33 817 1 464 1 624 933
    下载: 导出CSV

    表  2  控制站水位及超额洪量

    Table  2.   Water level and excess flood volume of control station

    典型洪水过程沙市洪峰水位/m莲花塘洪峰水位/m荆江附近超额洪量/亿m3城陵矶附近超额洪量/亿m3
    1870年 还原过程 49.66 37.5 239 93
    调度过程 46.31 35.69 46 72
    1935年 还原过程 46.61 36.68 32 139
    调度过程 44.9 35.59 0 76
    1954年 实测过程 45.78 36.89 20 303
    调度过程 44.35 36.25 0 205
    下载: 导出CSV

    表  3  三口各站计算洪峰流量

    Table  3.   Calculated peak discharge of the three rivers in Southern Jingjiang

    典型年方案枝城/(m3·s−1)新江口/(m3·s−1)沙道观/(m3·s−1)弥陀寺/(m3·s−1)康家岗/(m3·s−1)管家铺/(m3·s−1)分流比/%
    1870 方案1 111 358 12 117 6 494 2691 2029 12545 32.22
    方案2 76 979 8 224 3 996 2459 1118 7758 30.60
    方案3 77 368 7 793 3 723 2680 792 6086 27.24
    1935 方案1 73 668 7 889 3 841 3147 1149 7967 32.57
    方案2 55 279 5 810 2 630 2083 777 5893 31.10
    方案3 55 258 5 898 2 637 2089 743 5695 30.88
    1954 方案1 69 503 7 482 3 614 2432 1027 7238 31.36
    方案2 56 271 6 035 2 683 2113 755 5462 30.30
    方案3 56 290 5 851 2 569 2113 689 5083 28.97
    下载: 导出CSV

    表  4  洞庭湖区部分测站计算洪峰水位

    Table  4.   Calculated peak water level of some stations in Dongting Lake area

    典型年方案计算洪峰水位/m
    石龟山安乡南嘴小河嘴杨柳潭鹿角莲花塘
    1870方案142.5642.4838.5438.4237.7637.5737.50
    方案240.2040.0237.0036.8636.0435.8035.69
    方案340.1539.5535.9535.7534.8134.5434.41
    1935方案145.3943.5139.5639.2337.4937.0236.68
    方案243.1541.3438.0437.8436.3235.9035.59
    方案342.0039.5437.3337.0835.3434.8234.41
    1954方案141.5241.2339.0038.8237.3937.0536.89
    方案241.1140.6738.5438.3336.8536.7436.25
    方案340.6039.9037.5437.2335.2934.7434.40
    下载: 导出CSV
  • [1] 田玉刚, 覃东华, 杜渊会. 洞庭湖地区洪水灾害风险评估[J]. 灾害学,2011,26(3):56-60. (TIAN Yugang, QIN Donghua, DU Yuanhui. Flood risk assessment in Dongting Lake region[J]. Journal of Catastrophology, 2011, 26(3): 56-60. (in Chinese) doi:  10.3969/j.issn.1000-811X.2011.03.011
    [2] 徐卫红, 张双虎, 李娜, 等. 长江全流域大洪水下三峡水库对洞庭湖区防洪贡献分析[J]. 湖泊科学,2022,34(3). (XU Weihong, ZHANG Shuanghu, LI Na, et al. Analysis on flood control contribution of the Three Georges Reservoir for the Lake Dongting area under basin-wide severe floods of Yangtze River[J]. Journal of Lake Sciences, 2022, 34(3). (in Chinese) doi:  10.18307/2022.0318
    [3] 仇红亚, 李妍清, 陈璐, 等. 洞庭湖流域洪水遭遇规律研究[J]. 水力发电学报,2020,39(11):59-70. (QIU Hongya, LI Yanqing, CHEN Lu, et al. Study on patterns of flood coincidence in Dongting Lake basin[J]. Journal of Hydroelectric Engineering, 2020, 39(11): 59-70. (in Chinese)
    [4] 赵英林. 洞庭湖洪水地区组成及遭遇分析[J]. 武汉水利电力大学学报,1997,30(1):36-39. (ZHAO Yinglin. Analysis of flood region composition and encounter in Dongting Lake[J]. Engineering Journal of Wuhan University, 1997, 30(1): 36-39. (in Chinese)
    [5] 刘晓群, 易放辉, 栾震宇, 等. 东洞庭湖近期冲淤演变分析[J]. 泥沙研究,2019,44(4):25-32. (LIU Xiaoqun, YI Fanghui, LUAN Zhenyu, et al. Processes of east Dongting Lake in recent period[J]. Journal of Sediment Research, 2019, 44(4): 25-32. (in Chinese)
    [6] 李义天, 孙昭华, 邓金运. 论三峡水库下游的河床冲淤变化[J]. 应用基础与工程科学学报,2003,11(3):283-295. (LI Yitian, SUN Zhaohua, DENG Jinyun. A study on riverbed erosion downstream from the Three Gorges Reservoir[J]. Journal of Basic Science and Engineering, 2003, 11(3): 283-295. (in Chinese) doi:  10.3969/j.issn.1005-0930.2003.03.009
    [7] 胡向阳, 张细兵, 黄悦. 三峡工程蓄水后长江中下游来水来沙变化规律研究[J]. 长江科学院院报,2010,27(6):4-9. (HU Xiangyang, ZHANG Xibing, HUANG Yue. Research on change of coming sediment and coming water of middle-lower Yangtze River after TGP early operation[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(6): 4-9. (in Chinese) doi:  10.3969/j.issn.1001-5485.2010.06.002
    [8] 卢金友, 黄悦, 宫平. 三峡工程运用后长江中下游冲淤变化[J]. 人民长江,2006,37(9):55-57,87,112. (LU Jinyou, HUANG Yue, GONG Ping. Scouring and silting variation in middle and lower channel of the Yangtze River after TGP[J]. Yangtze River, 2006, 37(9): 55-57,87,112. (in Chinese) doi:  10.3969/j.issn.1001-4179.2006.09.020
    [9] 卢金友, 朱勇辉. 三峡水库下游江湖演变与治理若干问题探讨[J]. 长江科学院院报,2014,31(2):98-107. (LU Jinyou, ZHU Yonghui. Issues on evolution and regulation of Yangtze River and lakes downstream of TGP[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(2): 98-107. (in Chinese)
    [10] 胡腾飞, 施勇, 栾震宇, 等. 长江宜昌—监利段河床冲淤对宜昌站水沙变化的响应[J]. 水利水运工程学报,2020(4):48-56. (HU Tengfei, SHI Yong, LUAN Zhenyu, et al. Response of riverbed evolution of Yichang-Jianli reach of the Yangtze River to water and sediment conditions of Yichang Station[J]. Hydro-Science and Engineering, 2020(4): 48-56. (in Chinese) doi:  10.12170/2019062004
    [11] 姚仕明, 卢金友. 长江中下游河道演变规律及冲淤预测[J]. 人民长江,2013,44(23):22-28. (YAO Shiming, LU Jinyou. Evolution analysis and scouring-deposition prediction of middle and lower reaches of Yangtze River[J]. Yangtze River, 2013, 44(23): 22-28. (in Chinese) doi:  10.3969/j.issn.1001-4179.2013.23.005
    [12] 江焱生, 郑治军, 姚黑字, 等. 三峡工程建成后长江湖北段再遇1954年和1998年洪水水位计算[J]. 中国水利,2017(5):52-53. (JIANG Yansheng, ZHENG Zhijun, YAO Heizi, et al. Calculation of flood level in 1954 and 1998 in the Hubei section of the Yangtze River after the completion of the Three Gorges Project[J]. China Water Resources, 2017(5): 52-53. (in Chinese) doi:  10.3969/j.issn.1000-1123.2017.05.017
    [13] 宁磊, 张黎明, 许多. 三峡工程建成初期防洪调度研究[J]. 人民长江,2012,43(10):7-10. (NING Lei, ZHANG Liming, XU Duo. Study of flood control operation in initial period after completion of TGP[J]. Yangtze River, 2012, 43(10): 7-10. (in Chinese) doi:  10.3969/j.issn.1001-4179.2012.10.002
    [14] 胡四一, 施勇, 王银堂, 等. 长江中下游河湖洪水演进的数值模拟[J]. 水科学进展,2002,13(3):278-286. (HU Siyi, SHI Yong, WANG Yintang, et al. Numerical modeling of flood routing for the middle-Lower Yangtze River system[J]. Advances in Water Science, 2002, 13(3): 278-286. (in Chinese) doi:  10.3321/j.issn:1001-6791.2002.03.003
    [15] 谭维炎, 胡四一. 浅水流动计算中—阶有限体积法Osher格式的实现[J]. 水科学进展,1994,5(4):262-270. (TAN Weiyan, HU Siyi. Implementation of first-order finite-volume osher scheme in shallow-water flow computation[J]. Advances in Water Science, 1994, 5(4): 262-270. (in Chinese) doi:  10.3321/j.issn:1001-6791.1994.04.002
    [16] 施勇, 胡四一. 无结构网格上平面二维水沙模拟的有限体积法[J]. 水科学进展,2002,13(4):409-415. (SHI Yong, HU Siyi. A finite volume method for numerical modeling of 2-D flow and sediment movements on unstructured grids[J]. Advances in Water Science, 2002, 13(4): 409-415. (in Chinese) doi:  10.3321/j.issn:1001-6791.2002.04.003
    [17] 苏鹏, 李浩, 俞文超, 等. 量化三峡工程运行对长江中游水位变化的贡献[J]. 陕西水利,2021(5):43-45. (SU Peng, LI Hao, YU Wenchao, et al. Quantifying the contribution of the Three Gorges project to the change of water level in the middle reaches of the Yangtze River[J]. Shaanxi Water Resources, 2021(5): 43-45. (in Chinese)
    [18] 李义天, 薛居理, 孙昭华, 等. 三峡水库下游河床冲刷与水位变化[J]. 水力发电学报,2021,40(4):1-13. (LI Yitian, XUE Juli, SUN Zhaohua, et al. Channel degradation and river stage variations in reaches downstream of Three Gorges Reservoir[J]. Journal of Hydroelectric Engineering, 2021, 40(4): 1-13. (in Chinese) doi:  10.11660/slfdxb.20210401
    [19] 苏联璧. 长江1870年洪水的初步探讨[J]. 人民长江,1958(3):14-22. (SU Lianbi. Preliminary discussion on the flood of the Yangtze River in 1870[J]. Yangtze River, 1958(3): 14-22. (in Chinese)
    [20] 张纯瑞. 长江1935年7月上旬洪水简介[J]. 水文,1983(3):49-52. (ZHANG Chunrui. Brief introduction to the flood of the Yangtze River in early July 1935[J]. Journal of China Hydrology, 1983(3): 49-52. (in Chinese)
    [21] 胡勇军. 1930年代长江水灾与“废田还湖”问题研究[J]. 江南大学学报(人文社会科学版),2018,17(5):38-46. (HU Yongjun. The dilemma of flood control and People's livelihood: study on Yangtze River flood and “the return of farmland to lake” in the 1930s[J]. Journal of Jiangnan University (Humanities & Social Sciences), 2018, 17(5): 38-46. (in Chinese)
    [22] 苏成, 莫多闻, 王辉. 洞庭湖的形成、演变与洪涝灾害[J]. 水土保持研究,2001,8(2):52-55,87. (SU Cheng, MO Duowen, WANG Hui. Evolution of Lake Dongting and its flood Disasters[J]. Research of Soil and Water Conservation, 2001, 8(2): 52-55,87. (in Chinese) doi:  10.3969/j.issn.1005-3409.2001.02.014
    [23] 时文生, 杨玉荣. 1870年宜昌至汉口河段水量平衡分析[J]. 人民长江,1987,18(10):10-15,63. (SHI Wensheng, YANG Yurong. Water balance analysis of Yichang Hankou reach in 1870[J]. Yangtze River, 1987, 18(10): 10-15,63. (in Chinese)
    [24] 陈金荣, 黄忠恕. 长江流域1954年特大暴雨洪水[J]. 水文,1986,6(1):56-62,15. (CHEN Jinrong, HUANG Zhongshu. Severe rainstorm and flood in the Yangtze River Basin in 1954[J]. Journal of China Hydrology, 1986, 6(1): 56-62,15. (in Chinese)
  • [1] 李艳富, 韩昌海, 李子祥, 韩康, 余凯文.  琴键堰泄流能力影响因素与计算分析研究 . 水利水运工程学报, doi: 10.12170/20211111001
    [2] 邹鹰.  中小型水库防洪标准对比研究及对策建议 . 水利水运工程学报, doi: 10.12170/20200503003
    [3] 李宏恩, 马桂珍, 王芳, 戎文杰, 何勇军.  2000—2018年中国水库溃坝规律分析与对策 . 水利水运工程学报, doi: 10.12170/20201119001
    [4] 王志兴, 管功勋, 王天祎, 丁昌春.  胖头泡蓄滞洪区老龙口分洪闸泄洪能力分析 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2019.03.007
    [5] 乌景秀, 范子武, 杨帆, 刘国庆, 贾本有, 顾芳芳.  防洪排涝排水一体化模型在洪水风险图编制中的应用 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.06.001
    [6] 向锋, 施勇, 金秋, 栾震宇, 张庆梓.  洞庭湖枢纽调度方案比对分析 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.02.003
    [7] 陈俊鸿, 陈炼钢, 王岗, 施勇, 刘小龙.  基于耦合水动力模型的药湖联圩区洪水风险分析 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2017.05.005
    [8] 苑希民, 李长跃, 田福昌, 王丽娜.  多源洪水耦合模型在防洪保护区洪水分析中的应用 . 水利水运工程学报,
    [9] 冯敬敬,何文社,袁龙.  兰渝铁路杨家湾特大桥河工模型试验研究 . 水利水运工程学报,
    [10] 张铭,范子武.  水力不确定性因素对堤防防洪风险效益的影响 . 水利水运工程学报,
    [11] 穆锦斌,张小峰.  荆江-洞庭湖水沙变化影响分析 . 水利水运工程学报,
    [12] 李大鸣,管永宽,李玲玲,吕会娇,王强.  蓄滞洪区洪水演进数学模型研究及应用 . 水利水运工程学报,
    [13] 赖锡军,姜加虎,黄群.  漫滩河道洪水演算的水动力学模型 . 水利水运工程学报,
    [14] 张蔚.  平原河网的水动力学及泥沙模型研究 . 水利水运工程学报,
    [15] 张瑞凯.  三峡船闸末级闸首超长泄廊道中阀门水力学关键问题研究(1)——正常开启过程的阀门水动力学特性 . 水利水运工程学报,
    [16] 张瑞凯.  三峡船闸末级闸首超长泄长廊道中阀门水力学关键问题研究(2):—事故运水关闭过程的阀门水动力学特性 . 水利水运工程学报,
    [17] 张瑞凯.  三峡船闸末级闸首超长泄水廊道中阀门水力学关键问题研究(2)——事故动水关闭过程的阀门水动力学特性 . 水利水运工程学报,
    [18] 张瑞凯.  三峡船闸末级闸首超长泄水廊道中阀门 . 水利水运工程学报,
    [19] 范子武,姜树海.  蓄、滞洪区的洪水演进数值模拟与风险分析 . 水利水运工程学报,
    [20] 包纲鉴,陈锦珍.  卷扬垂直升船机水动力学一些问题的探讨 . 水利水运工程学报,
  • 加载中
图(4) / 表 (4)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  46
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29

/

返回文章
返回