留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某水利枢纽工程混凝土力学性能对比研究

范向前 刘决丁 葛菲 汤雷 韩浩田

范向前,刘决丁,葛菲,等. 某水利枢纽工程混凝土力学性能对比研究[J]. 水利水运工程学报,2023(2):129-137. doi:  10.12170/20211115001
引用本文: 范向前,刘决丁,葛菲,等. 某水利枢纽工程混凝土力学性能对比研究[J]. 水利水运工程学报,2023(2):129-137. doi:  10.12170/20211115001
(FAN Xiangqian, LIU Jueding, GE Fei, et al. Comparative study on mechanical properties of concrete for a hydraulic complex project[J]. Hydro-Science and Engineering, 2023(2): 129-137. (in Chinese)) doi:  10.12170/20211115001
Citation: (FAN Xiangqian, LIU Jueding, GE Fei, et al. Comparative study on mechanical properties of concrete for a hydraulic complex project[J]. Hydro-Science and Engineering, 2023(2): 129-137. (in Chinese)) doi:  10.12170/20211115001

某水利枢纽工程混凝土力学性能对比研究

doi: 10.12170/20211115001
基金项目: 国家自然科学基金资助项目(52171270,51739008,51879168)
详细信息
    作者简介:

    范向前(1982— ),男,河南登封人,正高级工程师,博士,主要从事混凝土断裂研究。E-mail:xqfan@nhri.cn

  • 中图分类号: TV431

Comparative study on mechanical properties of concrete for a hydraulic complex project

  • 摘要: 为探讨大坝混凝土的相关力学性能及断裂特性,基于某水利枢纽工程提供的两种不同混凝土配合比(根据含水率的不同分别命名为C0.48和C0.43)及现场粗细骨料,开展混凝土梁三点弯曲试验,测定其坍落度、抗压强度、劈裂强度等相关力学性能参数,并分析不同配合比对断裂面、起裂荷载与失稳荷载、临界有效裂缝长度及双K断裂韧度等断裂参数的影响。结果表明:C0.48混凝土的坍落度大于C0.43混凝土的坍落度,C0.48混凝土的抗压强度和劈裂强度均小于C0.43混凝土的;C0.48混凝土断裂面的粗骨料较C0.43混凝土断裂面凸出不明显;C0.43混凝土的起裂荷载与失稳荷载、临界有效裂缝长度及断裂韧度均比C0.48混凝土的要大,具有强度高、延性和韧性好的特点。
  • 图  1  试验装置

    Figure  1.  The experimental device

    图  2  不同配合比混凝土坍落度

    Figure  2.  Slump of concrete with different mix proportions

    图  3  不同配合比混凝土的抗压强度

    Figure  3.  Compressive strength of concrete with different mix proportions

    图  4  不同配合比混凝土的劈裂强度

    Figure  4.  Splitting strength of concrete with different mix proportions

    图  5  混凝土断裂面

    Figure  5.  Fracture surface of concrete

    图  6  荷载-裂缝口张开位移曲线

    Figure  6.  Load-crack opening displacement curve

    图  7  起裂荷载与失稳荷载变化

    Figure  7.  Variation of the crack initiation load and instability load

    图  8  临界有效裂缝长度变化

    Figure  8.  Variation of critical effective crack length

    图  9  断裂韧度变化

    Figure  9.  Variation of fracture toughness

    表  1  混凝土配合比参数

    Table  1.   Concrete mix proportion parameters

    混凝土
    标号
    水胶比减水剂
    掺量/%
    引气剂
    掺量/%
    1m3混凝土材料用量/ kg
    水泥粉煤灰小石中石大石减水剂引气剂
    C0.480.481.40.0693136585814714716282.710.12
    C0.430.431.40.0698160685074814816423.190.14
    下载: 导出CSV

    表  2  粉煤灰性质

    Table  2.   Test results of fly ash

    项目细度(45 μm方孔筛
    筛余)/%
    含水量/
    %
    需水量
    比/%
    烧失量/
    %
    SO3/
    %
    SiO2 /
    %
    Fe2O3/
    %
    Al2O3/
    %
    游离
    CaO/%
    碱含量/
    %
    活性
    指数/%
    实测值2.00.2944.951.0648.918.6421.900.071.3385
    GB/T 1596—2017≤12≤1.0≤95≤5.0≤3.0≤1.0≥70
    下载: 导出CSV

    表  3  试验结果

    Table  3.   Test results

    试件Pini/kNPun/kNac/mm(aca0)/h$K_{{\text{IC}}}^{{\text{ini}}}$/(MPa·m1/2)$ K_{{\text{IC}}}^{{\text{un}}} $ / (MPa·m1/2)
    C0.48-11.112.02118.480.390.510.78
    C0.48-21.122.12122.560.410.520.79
    C0.48-31.222.22111.310.360.490.77
    C0.48-41.132.09116.170.380.540.75
    平均值1.152.11117.130.390.520.77
    C0.43-11.414.3186.870.230.551.15
    C0.43-21.394.2991.450.260.541.16
    C0.43-31.524.5179.420.200.531.17
    C0.43-41.454.3983.910.220.571.14
    平均值1.444.3885.410.230.551.16
    下载: 导出CSV
  • [1] 胡少伟, 娄本星, 尹阳阳, 等. 蒸养混凝土早期断裂性能研究[J]. 水利水运工程学报,2020(4):88-95 doi:  10.12170/20191226004

    HU Shaowei, LOU Benxing, YIN Yangyang, et al. Experimental study on early fracture properties of steam-cured concrete[J]. Hydro-Science and Engineering, 2020(4): 88-95. (in Chinese) doi:  10.12170/20191226004
    [2] SEN U, OKEIL A M. Effect of biaxial stress state on seismic fragility of concrete gravity dams[J]. Earthquakes and Structures, 2020, 18(3): 285-296.
    [3] 范向前, 胡少伟, 陆俊. 基于声发射信号表征混凝土断裂过程的异常现象[J]. 水利水运工程学报,2014(3):26-31 doi:  10.3969/j.issn.1009-640X.2014.03.004

    FAN Xiangqian, HU Shaowei, LU Jun. Experimental analysis of abnormal phenomena in concrete fracture process based on acoustic emission signals characterization[J]. Hydro-Science and Engineering, 2014(3): 26-31. (in Chinese) doi:  10.3969/j.issn.1009-640X.2014.03.004
    [4] LI Q B, GUAN J F, WU Z M, et al. Equivalent maturity for ambient temperature effect on fracture parameters of site-casting dam concrete[J]. Construction and Building Materials, 2016, 120: 293-308. doi:  10.1016/j.conbuildmat.2016.05.111
    [5] 管俊峰, 李庆斌, 吴智敏, 等. 现场浇筑大坝混凝土起裂断裂韧度研究[J]. 水利学报,2014,45(12):1487-1492

    GUAN Junfeng, LI Qingbin, WU Zhimin, et al. Initial fracture toughness of site-casting dam concrete[J]. Journal of Hydraulic Engineering, 2014, 45(12): 1487-1492. (in Chinese)
    [6] 管俊峰, 李庆斌, 吴智敏. 现场浇筑大坝混凝土与湿筛混凝土起裂韧度换算关系研究[J]. 水利学报,2016,47(11):1435-1441

    GUAN Junfeng, LI Qingbin, WU Zhimin. Conversion relationship between initial fracture toughness of site-casting and sieved concrete[J]. Journal of Hydraulic Engineering, 2016, 47(11): 1435-1441. (in Chinese)
    [7] 卿龙邦, 郝冰娟, 赵欣, 等. 基于随机损伤与断裂耗散能等效的混凝土裂缝扩展分析[J]. 水利学报,2016,47(1):64-71

    QING Longbang, HAO Bingjuan, ZHAO Xin, et al. Research on the crack propagation processes of concrete based on energy consumption equivalence between stochastic damage and fracture[J]. Journal of Hydraulic Engineering, 2016, 47(1): 64-71. (in Chinese)
    [8] 冯炜, 贾金生, 陈改新, 等. 大坝混凝土界面力学性能的测试与数值模拟研究[J]. 水利水电技术,2012,43(2):30-34 doi:  10.3969/j.issn.1000-0860.2012.02.008

    FENG Wei, JIA Jinsheng, CHEN Gaixin, et al. Testing and numerical simulation on mechanical properties of dam concrete interface[J]. Water Resources and Hydropower Engineering, 2012, 43(2): 30-34. (in Chinese) doi:  10.3969/j.issn.1000-0860.2012.02.008
    [9] 王仲华, 陈如华. 三峡大坝全级配混凝土力学性能试验研究[J]. 长江科学院院报,1998,15(1):1-5

    WANG Zhonghua, CHEN Ruhua. Experimental study on mechanical properties of fully graded aggregate concrete in TGP[J]. Journal of Yangtze River Scientific Research Institute, 1998, 15(1): 1-5. (in Chinese)
    [10] CHEN H Q, WU S X, DANG F N. Research progress on dynamic mechanical behavior of high arch dam concrete[M]∥Seismic Safety of High Arch Dams. Amsterdam: Elsevier, 2016: 239-256.
    [11] 白亚飞, 王栋民. 公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的国内外研究进展[J]. 材料导报,2020,34(7):7099-7106 doi:  10.11896/cldb.19030152

    BAI Yafei, WANG Dongmin. Domestic and foreign research progress of air-entraining agents for low-slump of plastic concrete and no-slump of dry-hard concrete used in highway concrete[J]. Materials Reports, 2020, 34(7): 7099-7106. (in Chinese) doi:  10.11896/cldb.19030152
    [12] 赵成先, 孙红尧, 罗建华, 等. 寒冷环境下国内大坝混凝土的保温抗冰技术现状[J]. 水利水运工程学报,2021(1):78-85 doi:  10.12170/20200106003

    ZHAO Chengxian, SUN Hongyao, LUO Jianhua, et al. Current situations of thermal insulation and ice resistance technology of dam concrete in China under cold environment[J]. Hydro-Science and Engineering, 2021(1): 78-85. (in Chinese) doi:  10.12170/20200106003
    [13] MA T, FENG Z, TANG C, et al. Overall stability analysis of Xiluodu high arch dam based on fine three-dimension numerical modeling[J]. Advances in Civil Engineering, 2021, 2021(12): 1-15.
    [14] 孔丽娟, 葛勇, 张宝生, 等. 轻骨料的返水作用对粉煤灰二次水化的影响[J]. 硅酸盐学报,2009,37(7):1239-1243 doi:  10.3321/j.issn:0454-5648.2009.07.032

    KONG Lijuan, GE Yong, ZHANG Baosheng, et al. Effect of water release of lightweight aggregate on secondary hydration of fly ash[J]. Journal of the Chinese Ceramic Society, 2009, 37(7): 1239-1243. (in Chinese) doi:  10.3321/j.issn:0454-5648.2009.07.032
    [15] 崔溦, 陈王, 王宁. 考虑性态变化的早期混凝土热湿力耦合分析及其应用[J]. 土木工程学报,2015,48(2):44-53

    CUI Wei, CHEN Wang, WANG Ning. Thermo-hydro-mechanical coupling analysis of early-age concrete with behavioral changes considered and its application[J]. China Civil Engineering Journal, 2015, 48(2): 44-53. (in Chinese)
    [16] WANG X Y, DONG S F, ASHOUR A, et al. Bond of nanoinclusions reinforced concrete with old concrete: Strength, reinforcing mechanisms and prediction model[J]. Construction and Building Materials, 2021, 283: 122741. doi:  10.1016/j.conbuildmat.2021.122741
    [17] SAVIĆ A, DASTGERDI A S, BECK T, et al. The influence of concrete cover, type of wire indentation and concrete mix on bond between steel and concrete in prismatic prestressed concrete members[J]. Advanced Engineering Forum, 2021, 39: 103-126. doi:  10.4028/www.scientific.net/AEF.39.103
    [18] 胡少伟, 尹阳阳, 范冰, 等. 基于等效纯弯曲梁的混凝土双K断裂参数研究[J]. 工程力学,2019,36(12):44-51

    HU Shaowei, YIN Yangyang, FAN Bing, et al. Study of the doubie-K fracture parameters of concrete based on equivalent pure bending beams[J]. Engineering Mechanics, 2019, 36(12): 44-51. (in Chinese)
    [19] 范向前, 刘决丁, 胡少伟, 等. FRP黏结长度对混凝土三点弯曲梁断裂参数的影响[J]. 建筑材料学报,2019,22(1):38-44 doi:  10.3969/j.issn.1007-9629.2019.01.006

    FAN Xiangqian, LIU Jueding, HU Shaowei, et al. Influence of FRP bonding length on fracture parameters of concrete three-point bending beam[J]. Journal of Building Materials, 2019, 22(1): 38-44. (in Chinese) doi:  10.3969/j.issn.1007-9629.2019.01.006
    [20] ZHANG X F, XU S L. A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis[J]. Engineering Fracture Mechanics, 2011, 78(10): 2115-2138. doi:  10.1016/j.engfracmech.2011.03.014
    [21] FAN X Q, LIU J D. Test study on the best pasting layer of FRP reinforced concrete[J]. Surface Review and Letters, 2020, 27(2): 1950105. doi:  10.1142/S0218625X19501051
    [22] HAN Q H, YANG G, XU J, et al. Acoustic emission data analyses based on crumb rubber concrete beam bending tests[J]. Engineering Fracture Mechanics, 2019, 210: 189-202. doi:  10.1016/j.engfracmech.2018.05.016
    [23] 范向前, 刘决丁. FRP增强预制裂缝混凝土的断裂性能[J]. 建筑材料学报,2020,23(2):328-333, 371

    FAN Xiangqian, LIU Jueding. Fracture characteristics of FRP reinforced precast cracked concrete[J]. Journal of Building Materials, 2020, 23(2): 328-333, 371. (in Chinese)
    [24] 沈新普, 黄志强, 鲍文博. 混凝土断裂的理论与试验研究[M]. 北京: 中国水利水电出版社, 2008.

    SHEN Xinpu, HUANG Zhiqiang, BAO Wenbo. Experimental study and theory on fracture of concrete[M]. Beijing: China Water Power Press, 2008. (in Chinese)
    [25] 高丹盈, 张廷毅. 三点弯曲下钢纤维高强混凝土的断裂性能(英文)[J]. 硅酸盐学报,2007,35(12):1630-1635 doi:  10.3321/j.issn:0454-5648.2007.12.014

    GAO Danying, ZHANG Tingyi. Fracture characteristics of steel fiber reinforced high strength concrete under three-point bending[J]. Journal of the Chinese Ceramic Society, 2007, 35(12): 1630-1635. (in Chinese) doi:  10.3321/j.issn:0454-5648.2007.12.014
    [26] SUSANTI C M E, NAKAO T, YOSHIHARA H. Examination of the Mode II fracture behaviour of wood with a short crack in an asymmetric four-point bending test[J]. Engineering Fracture Mechanics, 2011, 78(16): 2775-2788. doi:  10.1016/j.engfracmech.2011.07.014
    [27] 徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011.

    XU Shilang. Fracture mechanics of concrete[M]. Beijing: Science Press, 2011. (in Chinese)
    [28] 张秋宇, 王立成. 基于能量法的水环境混凝土疲劳裂缝扩展模型[J]. 水利水运工程学报,2020(3):106-113 doi:  10.12170/20190303001

    ZHANG Qiuyu, WANG Licheng. Fatigue crack propagation model of concrete under water pressure based on energy approach[J]. Hydro-Science and Engineering, 2020(3): 106-113. (in Chinese) doi:  10.12170/20190303001
    [29] KUMAR S, BARAI S V. Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(10): 645-660.
  • [1] 杜甜甜, 王俊杰, 黄诗渊, 吕川.  击实水泥土Ⅰ型断裂特性试验研究 . 水利水运工程学报, 2023, (6): 1-9. doi: 10.12170/20220609001
    [2] 齐翠阁, 邱莉婷, 马福恒, 张湛, 李子阳.  大坝混凝土非连续变形的并发多尺度区域分解法 . 水利水运工程学报, 2023, (2): 121-128. doi: 10.12170/20220826001
    [3] 张斌林, 李波, 张兴军, 李文举.  热活化油页岩半焦对混凝土力学性能的影响研究 . 水利水运工程学报, 2023, (5): 139-148. doi: 10.12170/20220609002
    [4] 徐媛媛, 彭刚, 王乾峰, 肖姝娈, 李威, 彭竹君.  真三轴应力下混凝土的动态力学性能及破坏准则 . 水利水运工程学报, 2021, (1): 133-141. doi: 10.12170/20200305003
    [5] 刘妙燕, 陆俊, 明攀.  三点弯曲下橡胶混凝土的断裂性能 . 水利水运工程学报, 2021, (3): 31-40. doi: 10.12170/20200411001
    [6] 费大伟, 黄耀英, 丁倩, 夏世法, 包腾飞.  大坝混凝土内部相对湿度与孔隙水饱和度关系 . 水利水运工程学报, 2021, (3): 25-30. doi: 10.12170/20200521001
    [7] 梁甲, 王乾峰, 张修文, 肖洋.  水围压下粉煤灰混凝土的含水量及动态力学性能研究 . 水利水运工程学报, 2020, (6): 115-120. doi: 10.12170/20191010002
    [8] 胡少伟, 娄本星, 尹阳阳, 叶宇霄.  蒸养混凝土早期断裂性能研究 . 水利水运工程学报, 2020, (4): 88-95. doi: 10.12170/20191226004
    [9] 王思瑶, 胡少伟.  内部裂缝缺陷对混凝土断裂性能的影响 . 水利水运工程学报, 2020, (5): 96-102. doi: 10.12170/20190923001
    [10] 胡钰泉, 胡少伟, 黄逸群.  带裂缝混凝土轴拉力学性能及Kaiser效应试验研究 . 水利水运工程学报, 2019, (3): 67-75. doi: 10.16198/j.cnki.1009-640X.2019.03.009
    [11] 程卓群, 王乾峰, 王普, 孙尚鹏, 刘苗苗.  双轴受压混凝土动态力学特性及破坏准则研究 . 水利水运工程学报, 2019, (5): 101-107. doi: 10.16198/j.cnki.1009-640X.2019.05.013
    [12] 胡少伟, 王阳.  不同冻融方式下混凝土双K断裂韧度对比试验 . 水利水运工程学报, 2018, (2): 90-96. doi: 10.16198/j.cnki.1009-640X.2018.02.012
    [13] 朱海生, 陈健, 张桂荣, 王蔚, 方绪顺.  生态袋挡墙护岸结构设计及其力学性能变化 . 水利水运工程学报, 2015, (4): 48-55.
    [14] 范向前, 胡少伟, 陆俊.  基于声发射信号表征混凝土断裂过程的异常现象 . 水利水运工程学报, 2014, (3): 26-31.
    [15] 赵联桢, 杨平, 刘成.  混凝土早期力学性能试验研究 . 水利水运工程学报, 2013, (1): 35-40.
    [16] 郑丹,李文伟.  不同级配混凝土拉压多轴强度的断裂力学分析 . 水利水运工程学报, 2010, (4): -.
    [17] 钱文勋,张燕迟.  大坝混凝土早期热膨胀系数试验研究 . 水利水运工程学报, 2010, (3): -.
    [18] 钱文勋,张燕迟,蔡跃波,丁建彤.  考虑内部温度历史的大坝混凝土强度发展 . 水利水运工程学报, 2008, (4): -.
    [19] 石泉,龚英,蔡跃波,丁建彤,陈波.  水泥比表面积对碾压混凝土力学性能的影响 . 水利水运工程学报, 2008, (4): -.
    [20] 吴承宁,吴绍章.  超塑化混凝土坍落度损失研究 . 水利水运工程学报, 1987, (1): -.
  • 加载中
图(9) / 表 (3)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  88
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 网络出版日期:  2023-02-15
  • 刊出日期:  2023-04-15

/

返回文章
返回