Comparative study on mechanical properties of concrete for a hydraulic complex project
-
摘要: 为探讨大坝混凝土的相关力学性能及断裂特性,基于某水利枢纽工程提供的两种不同混凝土配合比(根据含水率的不同分别命名为C0.48和C0.43)及现场粗细骨料,开展混凝土梁三点弯曲试验,测定其坍落度、抗压强度、劈裂强度等相关力学性能参数,并分析不同配合比对断裂面、起裂荷载与失稳荷载、临界有效裂缝长度及双K断裂韧度等断裂参数的影响。结果表明:C0.48混凝土的坍落度大于C0.43混凝土的坍落度,C0.48混凝土的抗压强度和劈裂强度均小于C0.43混凝土的;C0.48混凝土断裂面的粗骨料较C0.43混凝土断裂面凸出不明显;C0.43混凝土的起裂荷载与失稳荷载、临界有效裂缝长度及断裂韧度均比C0.48混凝土的要大,具有强度高、延性和韧性好的特点。Abstract: In order to discuss the mechanical properties and fracture characteristics of dam concrete, a three-point bending test of concrete beam was carried out based on two different concrete mix ratios (named C0.48 and C0.43 respectively according to different moisture contents) provided by a hydraulic complex project and on-site coarse and fine aggregates. The relevant mechanical properties such as slump, compressive strength and splitting strength were determined, and the effects of different mixing ratios on fracture parameters such as fracture surface, cracking load and instability load, critical effective crack length and double K fracture toughness were analyzed. The test results show that the collapse of C0.48 concrete is greater than that of C0.43 concrete. The compressive strength and splitting strength of C0.48 concrete are lower than those of C0.43 concrete. The coarse aggregate of C0.48 concrete fracture surface is not as obvious as that of C0.43 concrete. The cracking load, destabilization load, critical effective crack length and fracture toughness of C0.43 concrete are higher than those of C0.48 concrete, which indicates that C0.43 concrete has high strength, good ductility and good toughness.
-
Key words:
- dam concrete /
- fracture characteristics /
- slump /
- mechanical properties /
- fracture parameters
-
表 1 混凝土配合比参数
Table 1. Concrete mix proportion parameters
混凝土
标号水胶比 减水剂
掺量/%引气剂
掺量/%1m3混凝土材料用量/ kg 水 水泥 粉煤灰 砂 小石 中石 大石 减水剂 引气剂 C0.48 0.48 1.4 0.06 93 136 58 581 471 471 628 2.71 0.12 C0.43 0.43 1.4 0.06 98 160 68 507 481 481 642 3.19 0.14 表 2 粉煤灰性质
Table 2. Test results of fly ash
项目 细度(45 μm方孔筛
筛余)/%含水量/
%需水量
比/%烧失量/
%SO3/
%SiO2 /
%Fe2O3/
%Al2O3/
%游离
CaO/%碱含量/
%活性
指数/%实测值 2.0 0.2 94 4.95 1.06 48.91 8.64 21.90 0.07 1.33 85 GB/T 1596—2017 ≤12 ≤1.0 ≤95 ≤5.0 ≤3.0 ≤1.0 ≥70 表 3 试验结果
Table 3. Test results
试件 Pini/kN Pun/kN ac/mm (ac−a0)/h $K_{{\text{IC}}}^{{\text{ini}}}$/(MPa·m1/2) $ K_{{\text{IC}}}^{{\text{un}}} $ / (MPa·m1/2) C0.48-1 1.11 2.02 118.48 0.39 0.51 0.78 C0.48-2 1.12 2.12 122.56 0.41 0.52 0.79 C0.48-3 1.22 2.22 111.31 0.36 0.49 0.77 C0.48-4 1.13 2.09 116.17 0.38 0.54 0.75 平均值 1.15 2.11 117.13 0.39 0.52 0.77 C0.43-1 1.41 4.31 86.87 0.23 0.55 1.15 C0.43-2 1.39 4.29 91.45 0.26 0.54 1.16 C0.43-3 1.52 4.51 79.42 0.20 0.53 1.17 C0.43-4 1.45 4.39 83.91 0.22 0.57 1.14 平均值 1.44 4.38 85.41 0.23 0.55 1.16 -
[1] 胡少伟, 娄本星, 尹阳阳, 等. 蒸养混凝土早期断裂性能研究[J]. 水利水运工程学报,2020(4):88-95 doi: 10.12170/20191226004 HU Shaowei, LOU Benxing, YIN Yangyang, et al. Experimental study on early fracture properties of steam-cured concrete[J]. Hydro-Science and Engineering, 2020(4): 88-95. (in Chinese) doi: 10.12170/20191226004 [2] SEN U, OKEIL A M. Effect of biaxial stress state on seismic fragility of concrete gravity dams[J]. Earthquakes and Structures, 2020, 18(3): 285-296. [3] 范向前, 胡少伟, 陆俊. 基于声发射信号表征混凝土断裂过程的异常现象[J]. 水利水运工程学报,2014(3):26-31 doi: 10.3969/j.issn.1009-640X.2014.03.004 FAN Xiangqian, HU Shaowei, LU Jun. Experimental analysis of abnormal phenomena in concrete fracture process based on acoustic emission signals characterization[J]. Hydro-Science and Engineering, 2014(3): 26-31. (in Chinese) doi: 10.3969/j.issn.1009-640X.2014.03.004 [4] LI Q B, GUAN J F, WU Z M, et al. Equivalent maturity for ambient temperature effect on fracture parameters of site-casting dam concrete[J]. Construction and Building Materials, 2016, 120: 293-308. doi: 10.1016/j.conbuildmat.2016.05.111 [5] 管俊峰, 李庆斌, 吴智敏, 等. 现场浇筑大坝混凝土起裂断裂韧度研究[J]. 水利学报,2014,45(12):1487-1492 GUAN Junfeng, LI Qingbin, WU Zhimin, et al. Initial fracture toughness of site-casting dam concrete[J]. Journal of Hydraulic Engineering, 2014, 45(12): 1487-1492. (in Chinese) [6] 管俊峰, 李庆斌, 吴智敏. 现场浇筑大坝混凝土与湿筛混凝土起裂韧度换算关系研究[J]. 水利学报,2016,47(11):1435-1441 GUAN Junfeng, LI Qingbin, WU Zhimin. Conversion relationship between initial fracture toughness of site-casting and sieved concrete[J]. Journal of Hydraulic Engineering, 2016, 47(11): 1435-1441. (in Chinese) [7] 卿龙邦, 郝冰娟, 赵欣, 等. 基于随机损伤与断裂耗散能等效的混凝土裂缝扩展分析[J]. 水利学报,2016,47(1):64-71 QING Longbang, HAO Bingjuan, ZHAO Xin, et al. Research on the crack propagation processes of concrete based on energy consumption equivalence between stochastic damage and fracture[J]. Journal of Hydraulic Engineering, 2016, 47(1): 64-71. (in Chinese) [8] 冯炜, 贾金生, 陈改新, 等. 大坝混凝土界面力学性能的测试与数值模拟研究[J]. 水利水电技术,2012,43(2):30-34 doi: 10.3969/j.issn.1000-0860.2012.02.008 FENG Wei, JIA Jinsheng, CHEN Gaixin, et al. Testing and numerical simulation on mechanical properties of dam concrete interface[J]. Water Resources and Hydropower Engineering, 2012, 43(2): 30-34. (in Chinese) doi: 10.3969/j.issn.1000-0860.2012.02.008 [9] 王仲华, 陈如华. 三峡大坝全级配混凝土力学性能试验研究[J]. 长江科学院院报,1998,15(1):1-5 WANG Zhonghua, CHEN Ruhua. Experimental study on mechanical properties of fully graded aggregate concrete in TGP[J]. Journal of Yangtze River Scientific Research Institute, 1998, 15(1): 1-5. (in Chinese) [10] CHEN H Q, WU S X, DANG F N. Research progress on dynamic mechanical behavior of high arch dam concrete[M]∥Seismic Safety of High Arch Dams. Amsterdam: Elsevier, 2016: 239-256. [11] 白亚飞, 王栋民. 公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的国内外研究进展[J]. 材料导报,2020,34(7):7099-7106 doi: 10.11896/cldb.19030152 BAI Yafei, WANG Dongmin. Domestic and foreign research progress of air-entraining agents for low-slump of plastic concrete and no-slump of dry-hard concrete used in highway concrete[J]. Materials Reports, 2020, 34(7): 7099-7106. (in Chinese) doi: 10.11896/cldb.19030152 [12] 赵成先, 孙红尧, 罗建华, 等. 寒冷环境下国内大坝混凝土的保温抗冰技术现状[J]. 水利水运工程学报,2021(1):78-85 doi: 10.12170/20200106003 ZHAO Chengxian, SUN Hongyao, LUO Jianhua, et al. Current situations of thermal insulation and ice resistance technology of dam concrete in China under cold environment[J]. Hydro-Science and Engineering, 2021(1): 78-85. (in Chinese) doi: 10.12170/20200106003 [13] MA T, FENG Z, TANG C, et al. Overall stability analysis of Xiluodu high arch dam based on fine three-dimension numerical modeling[J]. Advances in Civil Engineering, 2021, 2021(12): 1-15. [14] 孔丽娟, 葛勇, 张宝生, 等. 轻骨料的返水作用对粉煤灰二次水化的影响[J]. 硅酸盐学报,2009,37(7):1239-1243 doi: 10.3321/j.issn:0454-5648.2009.07.032 KONG Lijuan, GE Yong, ZHANG Baosheng, et al. Effect of water release of lightweight aggregate on secondary hydration of fly ash[J]. Journal of the Chinese Ceramic Society, 2009, 37(7): 1239-1243. (in Chinese) doi: 10.3321/j.issn:0454-5648.2009.07.032 [15] 崔溦, 陈王, 王宁. 考虑性态变化的早期混凝土热湿力耦合分析及其应用[J]. 土木工程学报,2015,48(2):44-53 CUI Wei, CHEN Wang, WANG Ning. Thermo-hydro-mechanical coupling analysis of early-age concrete with behavioral changes considered and its application[J]. China Civil Engineering Journal, 2015, 48(2): 44-53. (in Chinese) [16] WANG X Y, DONG S F, ASHOUR A, et al. Bond of nanoinclusions reinforced concrete with old concrete: Strength, reinforcing mechanisms and prediction model[J]. Construction and Building Materials, 2021, 283: 122741. doi: 10.1016/j.conbuildmat.2021.122741 [17] SAVIĆ A, DASTGERDI A S, BECK T, et al. The influence of concrete cover, type of wire indentation and concrete mix on bond between steel and concrete in prismatic prestressed concrete members[J]. Advanced Engineering Forum, 2021, 39: 103-126. doi: 10.4028/www.scientific.net/AEF.39.103 [18] 胡少伟, 尹阳阳, 范冰, 等. 基于等效纯弯曲梁的混凝土双K断裂参数研究[J]. 工程力学,2019,36(12):44-51 HU Shaowei, YIN Yangyang, FAN Bing, et al. Study of the doubie-K fracture parameters of concrete based on equivalent pure bending beams[J]. Engineering Mechanics, 2019, 36(12): 44-51. (in Chinese) [19] 范向前, 刘决丁, 胡少伟, 等. FRP黏结长度对混凝土三点弯曲梁断裂参数的影响[J]. 建筑材料学报,2019,22(1):38-44 doi: 10.3969/j.issn.1007-9629.2019.01.006 FAN Xiangqian, LIU Jueding, HU Shaowei, et al. Influence of FRP bonding length on fracture parameters of concrete three-point bending beam[J]. Journal of Building Materials, 2019, 22(1): 38-44. (in Chinese) doi: 10.3969/j.issn.1007-9629.2019.01.006 [20] ZHANG X F, XU S L. A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis[J]. Engineering Fracture Mechanics, 2011, 78(10): 2115-2138. doi: 10.1016/j.engfracmech.2011.03.014 [21] FAN X Q, LIU J D. Test study on the best pasting layer of FRP reinforced concrete[J]. Surface Review and Letters, 2020, 27(2): 1950105. doi: 10.1142/S0218625X19501051 [22] HAN Q H, YANG G, XU J, et al. Acoustic emission data analyses based on crumb rubber concrete beam bending tests[J]. Engineering Fracture Mechanics, 2019, 210: 189-202. doi: 10.1016/j.engfracmech.2018.05.016 [23] 范向前, 刘决丁. FRP增强预制裂缝混凝土的断裂性能[J]. 建筑材料学报,2020,23(2):328-333, 371 FAN Xiangqian, LIU Jueding. Fracture characteristics of FRP reinforced precast cracked concrete[J]. Journal of Building Materials, 2020, 23(2): 328-333, 371. (in Chinese) [24] 沈新普, 黄志强, 鲍文博. 混凝土断裂的理论与试验研究[M]. 北京: 中国水利水电出版社, 2008. SHEN Xinpu, HUANG Zhiqiang, BAO Wenbo. Experimental study and theory on fracture of concrete[M]. Beijing: China Water Power Press, 2008. (in Chinese) [25] 高丹盈, 张廷毅. 三点弯曲下钢纤维高强混凝土的断裂性能(英文)[J]. 硅酸盐学报,2007,35(12):1630-1635 doi: 10.3321/j.issn:0454-5648.2007.12.014 GAO Danying, ZHANG Tingyi. Fracture characteristics of steel fiber reinforced high strength concrete under three-point bending[J]. Journal of the Chinese Ceramic Society, 2007, 35(12): 1630-1635. (in Chinese) doi: 10.3321/j.issn:0454-5648.2007.12.014 [26] SUSANTI C M E, NAKAO T, YOSHIHARA H. Examination of the Mode II fracture behaviour of wood with a short crack in an asymmetric four-point bending test[J]. Engineering Fracture Mechanics, 2011, 78(16): 2775-2788. doi: 10.1016/j.engfracmech.2011.07.014 [27] 徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011. XU Shilang. Fracture mechanics of concrete[M]. Beijing: Science Press, 2011. (in Chinese) [28] 张秋宇, 王立成. 基于能量法的水环境混凝土疲劳裂缝扩展模型[J]. 水利水运工程学报,2020(3):106-113 doi: 10.12170/20190303001 ZHANG Qiuyu, WANG Licheng. Fatigue crack propagation model of concrete under water pressure based on energy approach[J]. Hydro-Science and Engineering, 2020(3): 106-113. (in Chinese) doi: 10.12170/20190303001 [29] KUMAR S, BARAI S V. Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(10): 645-660. -