留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融环境下水工碾压混凝土单轴动态抗压性能研究

孙超伟 陈兴周 柴军瑞 卫田霖 马斌

孙超伟,陈兴周,柴军瑞,等. 冻融环境下水工碾压混凝土单轴动态抗压性能研究[J]. 水利水运工程学报,2023(1):83-94. doi:  10.12170/20211118005
引用本文: 孙超伟,陈兴周,柴军瑞,等. 冻融环境下水工碾压混凝土单轴动态抗压性能研究[J]. 水利水运工程学报,2023(1):83-94. doi:  10.12170/20211118005
(SUN Chaowei, CHEN Xingzhou, CHAI Junrui, et al. Research on the uniaxial compressive behavior of hydraulic roller compacted concrete subjected to freeze-thaw cycles[J]. Hydro-Science and Engineering, 2023(1): 83-94. (in Chinese)) doi:  10.12170/20211118005
Citation: (SUN Chaowei, CHEN Xingzhou, CHAI Junrui, et al. Research on the uniaxial compressive behavior of hydraulic roller compacted concrete subjected to freeze-thaw cycles[J]. Hydro-Science and Engineering, 2023(1): 83-94. (in Chinese)) doi:  10.12170/20211118005

冻融环境下水工碾压混凝土单轴动态抗压性能研究

doi: 10.12170/20211118005
基金项目: 国家自然科学基金资助项目(51909224,51979218,U1965107);陕西省基础研究计划项目(2020JQ-920);陕西省教育厅专项科研计划项目(19JK0910)
详细信息
    作者简介:

    孙超伟(1990—),男,陕西周至人,副教授,主要从事寒区水工混凝土结构安全与耐久性研究。 E-mail:chao_wei_106@126.com

  • 中图分类号: TV431+.1

Research on the uniaxial compressive behavior of hydraulic roller compacted concrete subjected to freeze-thaw cycles

  • 摘要: 为研究冻融循环和加载应变率对水工碾压混凝土抗压力学性能的影响,通过室内模拟碾压混凝土坝工程配合比和施工工艺制备碾压混凝土试件,开展不同冻融循环次数(0、25、50、75次)下的冻融试验和不同加载应变率(10−5/s、10−4/s、10−3/s、10−2/s)下的单轴压缩试验,分析碾压混凝土冻融表观特征及加载破坏形态,研究冻融循环次数和加载应变率对抗压力学性能的影响规律;并基于多元回归分析方法,构建抗压强度、峰值应变、应力-应变曲线与冻融循环次数和加载应变率的相关关系。结果表明:碾压混凝土抗压强度与加载应变率呈线性增强关系,与冻融循环次数满足二次多项式的劣化关系;峰值应变与加载应变率满足二次多项式的降低关系,与冻融循环次数满足二次多项式的增长关系。通过全应力-应变拟合曲线与试验曲线的比较发现,在研究的应变率和冻融循环次数范围内,二者吻合较好。
  • 图  1  不同冻融循环次数后表观特征

    Figure  1.  Appearance subjected to different freeze-thaw cycles

    图  2  不同冻融循环次数后加载破坏形态

    Figure  2.  Failure mode subjected to different freezing-thawing cycles

    图  3  不同应变率下加载破坏形态

    Figure  3.  Failure mode subjected to different loading strain rates

    图  4  质量损失率与冻融循环次数的关系曲线

    Figure  4.  Relationship between mass loss rate and freezing-thawing cycles

    图  5  相对动弹性模量与冻融循环次数的关系曲线

    Figure  5.  Relationship between relative dynamic elasticity modulus and freezing-thawing cycles

    图  6  不同冻融循环次数下fcd${\dot \varepsilon _{\text{d}}}$关系

    Figure  6.  Relationship between fcd and ${\dot\varepsilon _{\text{d}}}$ under different freezing-thawing cycles

    图  7  不同冻融循环次数下Dσ${\dot \varepsilon _{\text{d}}}/{\dot \varepsilon _{\text{s}}}$关系

    Figure  7.  Relationship between Dσ and ${\dot \varepsilon _{\text{d}}}/{\dot \varepsilon _{\text{s}}}$ under different freezing-thawing cycles

    图  8  不同应变率下fcNN关系

    Figure  8.  Relationship between fcN and N under different loading strain rates

    图  9  不同应变率下SσN关系

    Figure  9.  Relationship between Sσ and N under different strain rates

    图  10  不同冻融循环次数下$ {\varepsilon _{{\text{cd}}}} $${\dot \varepsilon _{\text{d}}}$关系

    Figure  10.  Relationship between $ {\varepsilon _{{\text{cd}}}} $ and ${\dot \varepsilon _{\text{d}}}$ under different freezing-thawing cycles

    图  11  不同冻融循环次数下$ {{{\varepsilon _{{\text{cd}}}}} \mathord{\left/ {\vphantom {{{\varepsilon _{{\text{cd}}}}} {{\varepsilon _{{\text{cs}}}}}}} \right. } {{\varepsilon _{{\text{cs}}}}}} $${\dot \varepsilon }_{\rm{d}} / {\dot \varepsilon }_{\rm{s}}$关系

    Figure  11.  Relationship between $ {{{\varepsilon _{{\text{cd}}}}} \mathord{\left/ {\vphantom {{{\varepsilon _{{\text{cd}}}}} {{\varepsilon _{{\text{cs}}}}}}} \right. } {{\varepsilon _{{\text{cs}}}}}} $ and ${\dot \varepsilon }_{\rm{d}} / {\dot \varepsilon }_{\rm{s}}$ under different freezing-thawing cycles

    图  12  不同应变率下εcNN的关系

    Figure  12.  Relationship between εcN and N under different strain rates

    图  13  不同应变率下εcN/εc0N的关系

    Figure  13.  Relationship between εcN/εc0 and N under different strain rates

    图  14  不同应变率下全应力-应变曲线

    Figure  14.  Complete tress-strain curves under different strain rates

    图  15  不同冻融循环次数下全应力-应变曲线

    Figure  15.  Complete stress-strain curves under different freeze-thaw cycles

    表  1  Ⅱ级配碾压混凝土组成

    Table  1.   Roller compacted concrete mix proportion with gradation aggregates Ⅱ

    水/( kg·m−3)水泥/( kg·m−3)粉煤灰/( kg·m−3)水胶比砂率/%砂/( kg·m−3)粗骨料/( kg·m−3)外加剂质量百分比/%
    88701060.5336721 5070.05
    下载: 导出CSV

    表  2  抗压强度结果

    Table  2.   Compression strength results 单位:MPa

    冻融循环数/次10−5/s10−4/s10−3/s10−2/s
    028.3730.6732.9735.20
    2522.2324.5026.7628.37
    5014.3715.6017.4019.00
    759.3311.0012.0012.83
    下载: 导出CSV

    表  3  峰值应变试验结果

    Table  3.   Peak strain results

    冻融循环数/次10−5/s10−4/s10−3/s10−2/s
    01.67×10−31.17×10−31.11×10−31.18×10−3
    251.71×10−31.27×10−31.20×10−31.25×10−3
    502.12×10−31.66×10−31.60×10−31.68×10−3
    752.52×10−32.06×10−31.99×10−32.08×10−3
    下载: 导出CSV

    表  4  全应力-应变曲线方程控制参数

    Table  4.   Control parameters of stress-strain equations

    冻融循环数/次10−5/s10−4/s10−3/s10−2/s
    abcabcabcabc
    0 0.256 1.007 1.820 0.202 1.308 1.997 0.158 1.625 2.192 0.108 1.945 2.512
    25 −0.230 1.414 2.018 −0.066 1.717 2.171 0.018 2.044 2.344 0.036 2.325 2.623
    50 0.136 1.144 2.215 0.273 1.332 2.344 0.345 1.741 2.497 0.333 1.788 2.802
    75 0.468 0.886 2.412 0.576 0.994 2.518 0.641 1.278 2.649 0.644 1.290 2.963
    下载: 导出CSV
  • [1] 席浩, 武斌忠, 王保法. 碾压混凝土研究与工程实践[M]. 北京: 中国水利水电出版社, 2015: 8-15.

    XI Hao, WU Binzhong, WANG Baofa. Research and engineering practice of roller compacted concrete[M]. Beijing: China Water Power Press, 2015: 8-15. (in Chinese)
    [2] 贾金生. 碾压混凝土坝发展水平和工程实例[M]. 北京: 中国水利水电出版社, 2006.

    JIA Jinsheng. Development level and engineering examples of roller compacted concrete[M]. Beijing: China Water Power Press, 2006. (in Chinese)
    [3] HAZAREE C, CEYLAN H, WANG K J. Influences of mixture composition on properties and freeze-thaw resistance of RCC[J]. Construction and Building Materials, 2011, 25(1): 313-319. doi:  10.1016/j.conbuildmat.2010.06.023
    [4] ALGIN Z, GERGINCI S. Freeze-thaw resistance and water permeability properties of roller compacted concrete produced with macro synthetic fibre[J]. Construction and Building Materials, 2020, 234: 117382. doi:  10.1016/j.conbuildmat.2019.117382
    [5] 张楚汉, 金峰, 王进廷, 等. 高混凝土坝抗震安全评价的关键问题与研究进展[J]. 水利学报,2016,47(3):253-264 doi:  10.13243/j.cnki.slxb.20151204

    ZHANG Chuhan, JIN Feng, WANG Jinting, et al. Key issues and developments on seismic safety evaluation of high concrete dams[J]. Journal of Hydraulic Engineering, 2016, 47(3): 253-264. (in Chinese) doi:  10.13243/j.cnki.slxb.20151204
    [6] 国家能源局. 水电工程水工建筑物抗震设计规范: NB 35047—2015[S]. 北京: 中国水利水电出版社, 2015.

    National Energy Bureau of the People’s Republic of China. Code for seismic design of hydraulic structures of hydropower project: NB 35047—2015[S]. Beijing: China Water Power Press, 2015. (in Chinese)
    [7] 郑丹, 梁云涛, 李鑫鑫. 黏性对动力荷载下混凝土强度的影响机理[J]. 水力发电学报,2021,40(6):152-159 doi:  10.11660/slfdxb.20210614

    ZHENG Dan, LIANG Yuntao, LI Xinxin. Influence mechanism of pore liquid viscosity on concrete strength under dynamic loading[J]. Journal of Hydroelectric Engineering, 2021, 40(6): 152-159. (in Chinese) doi:  10.11660/slfdxb.20210614
    [8] 王国盛, 路德春, 杜修力, 等. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学,2018,35(6):58-67

    WANG Guosheng, LU Dechun, DU Xiuli, et al. Research on the actual dynamic strength and the rate effect mechanisms for concrete materials[J]. Engineering Mechanics, 2018, 35(6): 58-67. (in Chinese)
    [9] 施士升. 冻融循环对混凝土力学性能的影响[J]. 土木工程学报,1997,30(4):35-42 doi:  10.3321/j.issn:1000-131X.1997.04.005

    SHI Shisheng. Effect of freezing-thawing cycles on mechanical properties of concrete[J]. China Civil Engineering Journal, 1997, 30(4): 35-42. (in Chinese) doi:  10.3321/j.issn:1000-131X.1997.04.005
    [10] HASAN M, OKUYAMA H, SATO Y, et al. Stress-strain model of concrete damaged by freezing and thawing cycles[J]. Journal of Advanced Concrete Technology, 2004, 2(1): 89-99. doi:  10.3151/jact.2.89
    [11] 邹超英, 赵娟, 梁锋, 等. 冻融作用后混凝土力学性能的衰减规律[J]. 建筑结构学报,2008,29(1):117-123, 138 doi:  10.3321/j.issn:1000-6869.2008.01.017

    ZOU Chaoying, ZHAO Juan, LIANG Feng, et al. Degradation of mechanical properties of concrete caused by freeze-thaw action[J]. Journal of Building Structures, 2008, 29(1): 117-123, 138. (in Chinese) doi:  10.3321/j.issn:1000-6869.2008.01.017
    [12] DUAN A, JIN W L, QIAN J R. Effect of freeze-thaw cycles on the stress-strain curves of unconfined and confined concrete[J]. Materials and Structures, 2011, 44(7): 1309-1324. doi:  10.1617/s11527-010-9702-9
    [13] 曹大富, 富立志, 杨忠伟, 等. 冻融循环作用下混凝土受压本构特征研究[J]. 建筑材料学报,2013,16(1):17-23, 32 doi:  10.3969/j.issn.1007-9629.2013.01.004

    CAO Dafu, FU Lizhi, YANG Zhongwei, et al. Study on constitutive relations of compressed concrete subjected to action of freezing-thawing cycles[J]. Journal of Building Materials, 2013, 16(1): 17-23, 32. (in Chinese) doi:  10.3969/j.issn.1007-9629.2013.01.004
    [14] 田威, 邢凯, 谢永利. 冻融环境下混凝土损伤劣化机制的力学试验研究[J]. 实验力学,2015,30(3):299-304 doi:  10.7520/1001-4888-14-127

    TIAN Wei, XING Kai, XIE Yongli. Experimental study of damage degradation mechanism of concrete in freeze-thaw environment[J]. Journal of Experimental Mechanics, 2015, 30(3): 299-304. (in Chinese) doi:  10.7520/1001-4888-14-127
    [15] 田威, 谢永利, 党发宁. 冻融环境下混凝土力学性能试验及损伤演化[J]. 四川大学学报(工程科学版),2015,47(4):38-44

    TIAN Wei, XIE Yongli, DANG Faning. Experimental study on the mechanical property and damage evolution of concrete under freeze-thaw environment[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(4): 38-44. (in Chinese)
    [16] 田威, 韩女, 张鹏坤. 混凝土冻融循环下动态破损机理的试验研究[J]. 振动与冲击,2017,36(8):79-85

    TIAN Wei, HAN Nü, ZHANG Pengkun. Experimental study on the dynamic damage mechanism of concrete under freeze-thaw cycles[J]. Journal of Vibration and Shock, 2017, 36(8): 79-85. (in Chinese)
    [17] 徐媛媛, 彭刚, 王乾峰, 等. 真三轴应力下混凝土的动态力学性能及破坏准则[J]. 水利水运工程学报,2021(1):133-141 doi:  10.12170/20200305003

    XU Yuanyuan, PENG Gang, WANG Qianfeng, et al. Dynamic mechanical properties and failure criteria of concrete under true triaxial stress[J]. Hydro-Science and Engineering, 2021(1): 133-141. (in Chinese) doi:  10.12170/20200305003
    [18] ZHANG C H, WANG G L, WANG S M, et al. Experimental tests of rolled compacted concrete and nonlinear fracture analysis of rolled compacted concrete dams[J]. Journal of Materials in Civil Engineering, 2002, 14(2): 108-115. doi:  10.1061/(ASCE)0899-1561(2002)14:2(108)
    [19] 王怀亮, 宋玉普. 多轴应力条件下碾压混凝土层面抗剪强度试验研究[J]. 水利学报,2011,42(9):1095-1101, 1109 doi:  10.13243/j.cnki.slxb.2011.09.012

    WANG Huailiang, SONG Yupu. Mechanical properties of roller compacted concrete under multiaxial stress state[J]. Journal of Hydraulic Engineering, 2011, 42(9): 1095-1101, 1109. (in Chinese) doi:  10.13243/j.cnki.slxb.2011.09.012
    [20] 王怀亮, 闻伟. 碾压混凝土单轴动态力学性能研究[J]. 水力发电学报,2011,30(4):155-160, 167

    WANG Huailiang, WEN Wei. Dynamic mechanical properties of RCC under uniaxial stress[J]. Journal of Hydroelectric Engineering, 2011, 30(4): 155-160, 167. (in Chinese)
    [21] 张社荣, 宋冉, 王超, 等. 碾压混凝土的动态力学特性分析及损伤演化本构模型建立[J]. 中南大学学报(自然科学版),2019,50(1):130-138 doi:  10.11817/j.issn.1672-7207.2019.01.017

    ZHANG Sherong, SONG Ran, WANG Chao, et al. Dynamic mechanical property analysis of roller-compacted concrete and damage constitutive model establishment[J]. Journal of Central South University (Science and Technology), 2019, 50(1): 130-138. (in Chinese) doi:  10.11817/j.issn.1672-7207.2019.01.017
    [22] SARGIN M, GHOSH S K, HANDA V K. Effects of lateral reinforcement upon the strength and deformation properties of concrete[J]. Magazine of Concrete Research, 1971, 23(75/76): 99-110.
    [23] 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报,1982,3(1):1-12

    GUO Zhenhai, ZHANG Xiuqin, ZHANG Dacheng, et al. Experimental investigation of the complete stress-strain curve of concrete[J]. Journal of Building Structures, 1982, 3(1): 1-12. (in Chinese)
  • [1] 封江东, 王金绪, 孙晓伟, 黎卫超, 曹昂.  水下高耸薄墙爆破对紧邻钢管桩的动力影响 . 水利水运工程学报, 2023, (3): 130-137. doi: 10.12170/20220105001
    [2] 李燕, 王斯海, 朱锐.  复杂边界条件下膨胀土的体变特性与抗压强度研究 . 水利水运工程学报, 2022, (4): 106-113. doi: 10.12170/20210627001
    [3] 甘磊, 冯先伟, 沈振中.  盐冻作用下水工混凝土强度演化模型 . 水利水运工程学报, 2022, (4): 131-139. doi: 10.12170/20210725001
    [4] 陈永, 黄英豪, 朱洵, 吴敏, 王硕, 朱锐.  冻融循环对膨胀土变形和力学特性的影响研究 . 水利水运工程学报, 2021, (5): 112-119. doi: 10.12170/20210116001
    [5] 孙豹, 彭刚, 王乾峰, 杨紫辉.  混凝土剪切强度影响因素敏感性分析 . 水利水运工程学报, 2019, (3): 112-118. doi: 10.16198/j.cnki.1009-640X.2019.03.014
    [6] 孙豹, 王乾峰, 徐童淋, 贺路翔.  冻融劣化混凝土压剪作用下力学特性及破坏准则 . 水利水运工程学报, 2019, (4): 107-115. doi: 10.16198/j.cnki.1009-640X.2019.04.015
    [7] 王玉孝, 沈婷, 李国英.  组合型混凝土面板堆石坝应力应变特性分析 . 水利水运工程学报, 2018, (5): 56-62. doi: 10.16198/j.cnki.1009-640X.2018.05.008
    [8] 练迪, 黄耀英, 朱赵辉, 高俊.  考虑温度历程的混凝土坝实测应变转换应力分析 . 水利水运工程学报, 2017, (6): 98-103. doi: 10.16198/j.cnki.1009-640X.2017.06.014
    [9] 宋迎俊, 许雷, 鲁洋, 钱智宇, 张雨灼, 李剑萍.  基于正交设计的膨胀土冻融循环试验研究 . 水利水运工程学报, 2017, (2): 51-58. doi: 10.16198/j.cnki.1009-640X.2017.02.007
    [10] 柳琪, 彭刚, 徐童淋, 杨乃鑫.  冻融劣化混凝土循环加卸载外包络线及能量演化 . 水利水运工程学报, 2017, (6): 85-91. doi: 10.16198/j.cnki.1009-640X.2017.06.012
    [11] 刘博文, 彭刚, 王孝政, 马小亮, 邓媛.  不同冻融循环次数混凝土单轴压缩试验 . 水利水运工程学报, 2017, (1): 32-36. doi: 10.16198/j.cnki.1009-640X.2017.01.005
    [12] 王哲学, 王建华, 程星磊.  软黏土不排水循环应力应变关系的数值模拟 . 水利水运工程学报, 2015, (3): 81-87.
    [13] 辛华荣,王建,严根华,赵建平.  大型平面有轨对拉式弧形闸门流激振动特性及抗振措施 . 水利水运工程学报, 2012, (6): 87-94.
    [14] 陈迅捷,欧阳幼玲.  海洋环境中混凝土抗冻融循环试验研究 . 水利水运工程学报, 2009, (2): -.
    [15] 石泉,龚英,蔡跃波,丁建彤,陈波.  水泥比表面积对碾压混凝土力学性能的影响 . 水利水运工程学报, 2008, (4): -.
    [16] 路观平.  连拱坝交叉模态综合法的完备性 . 水利水运工程学报, 2007, (2): 48-53.
    [17] 何世钦,贡金鑫,赵国藩.  冻融循环下混凝土中氯离子的扩散性 . 水利水运工程学报, 2004, (4): 32-36.
    [18] 赵小莲,张仲卿.  坝顶开孔的双曲拱坝设置水平梁和闸墩的应力分析 . 水利水运工程学报, 2004, (4): 46-49.
    [19] 李克亮,洪晓林.  用并层非均匀单元法分析碾压混凝土拱坝温度应力 . 水利水运工程学报, 2001, (3): 41-47.
    [20] 张启岳.  砂卵石料的强度和应力应变特性 . 水利水运工程学报, 1985, (3): -.
  • 加载中
图(15) / 表 (4)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  44
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 网络出版日期:  2023-01-05
  • 刊出日期:  2023-02-15

/

返回文章
返回