Research on the uniaxial compressive behavior of hydraulic roller compacted concrete subjected to freeze-thaw cycles
-
摘要: 为研究冻融循环和加载应变率对水工碾压混凝土抗压力学性能的影响,通过室内模拟碾压混凝土坝工程配合比和施工工艺制备碾压混凝土试件,开展不同冻融循环次数(0、25、50、75次)下的冻融试验和不同加载应变率(10−5/s、10−4/s、10−3/s、10−2/s)下的单轴压缩试验,分析碾压混凝土冻融表观特征及加载破坏形态,研究冻融循环次数和加载应变率对抗压力学性能的影响规律;并基于多元回归分析方法,构建抗压强度、峰值应变、应力-应变曲线与冻融循环次数和加载应变率的相关关系。结果表明:碾压混凝土抗压强度与加载应变率呈线性增强关系,与冻融循环次数满足二次多项式的劣化关系;峰值应变与加载应变率满足二次多项式的降低关系,与冻融循环次数满足二次多项式的增长关系。通过全应力-应变拟合曲线与试验曲线的比较发现,在研究的应变率和冻融循环次数范围内,二者吻合较好。Abstract: In order to study the effect of freeze-thaw cycles and loading strain rate on the compressive behavior of hydraulic roller compacted concrete, actual mix design and construction technology of hydraulic concrete dam project was considered to prepare specimens, and the freeze-thaw tests with various cycles (0, 25, 50, 75) and dynamic uniaxial compressive tests with different loading strain rates (10−5/s, 10−4/s, 10−3/s, 10−2/s) were conducted for roller compacted concrete. The freeze-thaw appearance and failure mode subjected to dynamic uniaxial compressive loading and freeze-thaw cycles were analyzed. The effects of freeze-thaw cycles and strain rates on uniaxial compressive strength, peak strain and stress-strain curves were studied, and the corresponding relationship was established based on multiple regression analysis method. The results show that the compressive strength increases linearly with the increasing strain rates and reduces with the increasing freeze-thaw cycles in accordance with two-polynomial relation. The peak strain reduces with the increasing strain rates in accordance with two-polynomial relation, and increases with the increasing strain rates in accordance with two-polynomial relation. By comparing the theoretical stress-strain curves obtained from the constitutive model with the experimental curves, it is revealed that they are in good agreement with the studied range of strain rates and freeze-thaw cycles.
-
图 11 不同冻融循环次数下
$ {{{\varepsilon _{{\text{cd}}}}} \mathord{\left/ {\vphantom {{{\varepsilon _{{\text{cd}}}}} {{\varepsilon _{{\text{cs}}}}}}} \right. } {{\varepsilon _{{\text{cs}}}}}} $ 与${\dot \varepsilon }_{\rm{d}} / {\dot \varepsilon }_{\rm{s}}$ 关系Figure 11. Relationship between
$ {{{\varepsilon _{{\text{cd}}}}} \mathord{\left/ {\vphantom {{{\varepsilon _{{\text{cd}}}}} {{\varepsilon _{{\text{cs}}}}}}} \right. } {{\varepsilon _{{\text{cs}}}}}} $ and${\dot \varepsilon }_{\rm{d}} / {\dot \varepsilon }_{\rm{s}}$ under different freezing-thawing cycles表 1 Ⅱ级配碾压混凝土组成
Table 1. Roller compacted concrete mix proportion with gradation aggregates Ⅱ
水/( kg·m−3) 水泥/( kg·m−3) 粉煤灰/( kg·m−3) 水胶比 砂率/% 砂/( kg·m−3) 粗骨料/( kg·m−3) 外加剂质量百分比/% 88 70 106 0.5 33 672 1 507 0.05 表 2 抗压强度结果
Table 2. Compression strength results
单位:MPa 冻融循环数/次 10−5/s 10−4/s 10−3/s 10−2/s 0 28.37 30.67 32.97 35.20 25 22.23 24.50 26.76 28.37 50 14.37 15.60 17.40 19.00 75 9.33 11.00 12.00 12.83 表 3 峰值应变试验结果
Table 3. Peak strain results
冻融循环数/次 10−5/s 10−4/s 10−3/s 10−2/s 0 1.67×10−3 1.17×10−3 1.11×10−3 1.18×10−3 25 1.71×10−3 1.27×10−3 1.20×10−3 1.25×10−3 50 2.12×10−3 1.66×10−3 1.60×10−3 1.68×10−3 75 2.52×10−3 2.06×10−3 1.99×10−3 2.08×10−3 表 4 全应力-应变曲线方程控制参数
Table 4. Control parameters of stress-strain equations
冻融循环数/次 10−5/s 10−4/s 10−3/s 10−2/s a b c a b c a b c a b c 0 0.256 1.007 1.820 0.202 1.308 1.997 0.158 1.625 2.192 0.108 1.945 2.512 25 −0.230 1.414 2.018 −0.066 1.717 2.171 0.018 2.044 2.344 0.036 2.325 2.623 50 0.136 1.144 2.215 0.273 1.332 2.344 0.345 1.741 2.497 0.333 1.788 2.802 75 0.468 0.886 2.412 0.576 0.994 2.518 0.641 1.278 2.649 0.644 1.290 2.963 -
[1] 席浩, 武斌忠, 王保法. 碾压混凝土研究与工程实践[M]. 北京: 中国水利水电出版社, 2015: 8-15. XI Hao, WU Binzhong, WANG Baofa. Research and engineering practice of roller compacted concrete[M]. Beijing: China Water Power Press, 2015: 8-15. (in Chinese) [2] 贾金生. 碾压混凝土坝发展水平和工程实例[M]. 北京: 中国水利水电出版社, 2006. JIA Jinsheng. Development level and engineering examples of roller compacted concrete[M]. Beijing: China Water Power Press, 2006. (in Chinese) [3] HAZAREE C, CEYLAN H, WANG K J. Influences of mixture composition on properties and freeze-thaw resistance of RCC[J]. Construction and Building Materials, 2011, 25(1): 313-319. doi: 10.1016/j.conbuildmat.2010.06.023 [4] ALGIN Z, GERGINCI S. Freeze-thaw resistance and water permeability properties of roller compacted concrete produced with macro synthetic fibre[J]. Construction and Building Materials, 2020, 234: 117382. doi: 10.1016/j.conbuildmat.2019.117382 [5] 张楚汉, 金峰, 王进廷, 等. 高混凝土坝抗震安全评价的关键问题与研究进展[J]. 水利学报,2016,47(3):253-264 doi: 10.13243/j.cnki.slxb.20151204 ZHANG Chuhan, JIN Feng, WANG Jinting, et al. Key issues and developments on seismic safety evaluation of high concrete dams[J]. Journal of Hydraulic Engineering, 2016, 47(3): 253-264. (in Chinese) doi: 10.13243/j.cnki.slxb.20151204 [6] 国家能源局. 水电工程水工建筑物抗震设计规范: NB 35047—2015[S]. 北京: 中国水利水电出版社, 2015. National Energy Bureau of the People’s Republic of China. Code for seismic design of hydraulic structures of hydropower project: NB 35047—2015[S]. Beijing: China Water Power Press, 2015. (in Chinese) [7] 郑丹, 梁云涛, 李鑫鑫. 黏性对动力荷载下混凝土强度的影响机理[J]. 水力发电学报,2021,40(6):152-159 doi: 10.11660/slfdxb.20210614 ZHENG Dan, LIANG Yuntao, LI Xinxin. Influence mechanism of pore liquid viscosity on concrete strength under dynamic loading[J]. Journal of Hydroelectric Engineering, 2021, 40(6): 152-159. (in Chinese) doi: 10.11660/slfdxb.20210614 [8] 王国盛, 路德春, 杜修力, 等. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学,2018,35(6):58-67 WANG Guosheng, LU Dechun, DU Xiuli, et al. Research on the actual dynamic strength and the rate effect mechanisms for concrete materials[J]. Engineering Mechanics, 2018, 35(6): 58-67. (in Chinese) [9] 施士升. 冻融循环对混凝土力学性能的影响[J]. 土木工程学报,1997,30(4):35-42 doi: 10.3321/j.issn:1000-131X.1997.04.005 SHI Shisheng. Effect of freezing-thawing cycles on mechanical properties of concrete[J]. China Civil Engineering Journal, 1997, 30(4): 35-42. (in Chinese) doi: 10.3321/j.issn:1000-131X.1997.04.005 [10] HASAN M, OKUYAMA H, SATO Y, et al. Stress-strain model of concrete damaged by freezing and thawing cycles[J]. Journal of Advanced Concrete Technology, 2004, 2(1): 89-99. doi: 10.3151/jact.2.89 [11] 邹超英, 赵娟, 梁锋, 等. 冻融作用后混凝土力学性能的衰减规律[J]. 建筑结构学报,2008,29(1):117-123, 138 doi: 10.3321/j.issn:1000-6869.2008.01.017 ZOU Chaoying, ZHAO Juan, LIANG Feng, et al. Degradation of mechanical properties of concrete caused by freeze-thaw action[J]. Journal of Building Structures, 2008, 29(1): 117-123, 138. (in Chinese) doi: 10.3321/j.issn:1000-6869.2008.01.017 [12] DUAN A, JIN W L, QIAN J R. Effect of freeze-thaw cycles on the stress-strain curves of unconfined and confined concrete[J]. Materials and Structures, 2011, 44(7): 1309-1324. doi: 10.1617/s11527-010-9702-9 [13] 曹大富, 富立志, 杨忠伟, 等. 冻融循环作用下混凝土受压本构特征研究[J]. 建筑材料学报,2013,16(1):17-23, 32 doi: 10.3969/j.issn.1007-9629.2013.01.004 CAO Dafu, FU Lizhi, YANG Zhongwei, et al. Study on constitutive relations of compressed concrete subjected to action of freezing-thawing cycles[J]. Journal of Building Materials, 2013, 16(1): 17-23, 32. (in Chinese) doi: 10.3969/j.issn.1007-9629.2013.01.004 [14] 田威, 邢凯, 谢永利. 冻融环境下混凝土损伤劣化机制的力学试验研究[J]. 实验力学,2015,30(3):299-304 doi: 10.7520/1001-4888-14-127 TIAN Wei, XING Kai, XIE Yongli. Experimental study of damage degradation mechanism of concrete in freeze-thaw environment[J]. Journal of Experimental Mechanics, 2015, 30(3): 299-304. (in Chinese) doi: 10.7520/1001-4888-14-127 [15] 田威, 谢永利, 党发宁. 冻融环境下混凝土力学性能试验及损伤演化[J]. 四川大学学报(工程科学版),2015,47(4):38-44 TIAN Wei, XIE Yongli, DANG Faning. Experimental study on the mechanical property and damage evolution of concrete under freeze-thaw environment[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(4): 38-44. (in Chinese) [16] 田威, 韩女, 张鹏坤. 混凝土冻融循环下动态破损机理的试验研究[J]. 振动与冲击,2017,36(8):79-85 TIAN Wei, HAN Nü, ZHANG Pengkun. Experimental study on the dynamic damage mechanism of concrete under freeze-thaw cycles[J]. Journal of Vibration and Shock, 2017, 36(8): 79-85. (in Chinese) [17] 徐媛媛, 彭刚, 王乾峰, 等. 真三轴应力下混凝土的动态力学性能及破坏准则[J]. 水利水运工程学报,2021(1):133-141 doi: 10.12170/20200305003 XU Yuanyuan, PENG Gang, WANG Qianfeng, et al. Dynamic mechanical properties and failure criteria of concrete under true triaxial stress[J]. Hydro-Science and Engineering, 2021(1): 133-141. (in Chinese) doi: 10.12170/20200305003 [18] ZHANG C H, WANG G L, WANG S M, et al. Experimental tests of rolled compacted concrete and nonlinear fracture analysis of rolled compacted concrete dams[J]. Journal of Materials in Civil Engineering, 2002, 14(2): 108-115. doi: 10.1061/(ASCE)0899-1561(2002)14:2(108) [19] 王怀亮, 宋玉普. 多轴应力条件下碾压混凝土层面抗剪强度试验研究[J]. 水利学报,2011,42(9):1095-1101, 1109 doi: 10.13243/j.cnki.slxb.2011.09.012 WANG Huailiang, SONG Yupu. Mechanical properties of roller compacted concrete under multiaxial stress state[J]. Journal of Hydraulic Engineering, 2011, 42(9): 1095-1101, 1109. (in Chinese) doi: 10.13243/j.cnki.slxb.2011.09.012 [20] 王怀亮, 闻伟. 碾压混凝土单轴动态力学性能研究[J]. 水力发电学报,2011,30(4):155-160, 167 WANG Huailiang, WEN Wei. Dynamic mechanical properties of RCC under uniaxial stress[J]. Journal of Hydroelectric Engineering, 2011, 30(4): 155-160, 167. (in Chinese) [21] 张社荣, 宋冉, 王超, 等. 碾压混凝土的动态力学特性分析及损伤演化本构模型建立[J]. 中南大学学报(自然科学版),2019,50(1):130-138 doi: 10.11817/j.issn.1672-7207.2019.01.017 ZHANG Sherong, SONG Ran, WANG Chao, et al. Dynamic mechanical property analysis of roller-compacted concrete and damage constitutive model establishment[J]. Journal of Central South University (Science and Technology), 2019, 50(1): 130-138. (in Chinese) doi: 10.11817/j.issn.1672-7207.2019.01.017 [22] SARGIN M, GHOSH S K, HANDA V K. Effects of lateral reinforcement upon the strength and deformation properties of concrete[J]. Magazine of Concrete Research, 1971, 23(75/76): 99-110. [23] 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报,1982,3(1):1-12 GUO Zhenhai, ZHANG Xiuqin, ZHANG Dacheng, et al. Experimental investigation of the complete stress-strain curve of concrete[J]. Journal of Building Structures, 1982, 3(1): 1-12. (in Chinese) -