留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

皖北平原不同土壤水分养分差异性研究

杜明成 张建云 王振龙 刘猛 刘翠善 王国庆

杜明成,张建云,王振龙,等. 皖北平原不同土壤水分养分差异性研究[J]. 水利水运工程学报. doi:  10.12170/20211128001
引用本文: 杜明成,张建云,王振龙,等. 皖北平原不同土壤水分养分差异性研究[J]. 水利水运工程学报. doi:  10.12170/20211128001
(DU Mingcheng, ZHANG Jianyun, WANG Zhenlong, et al. Study on the variability of different soil moisture and nutrients in the Northern Anhui Plain[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20211128001
Citation: (DU Mingcheng, ZHANG Jianyun, WANG Zhenlong, et al. Study on the variability of different soil moisture and nutrients in the Northern Anhui Plain[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20211128001

皖北平原不同土壤水分养分差异性研究

doi: 10.12170/20211128001
基金项目: 国家自然科学基金资助项目(41830863,52121006);国家重点研发计划项目(2021YFC3201100,2017YFA0605002,2017YFC0404602);水文水资源与水利工程科学国家重点实验室“一带一路”水与可持续发展科技基金(2019nkzd02, 2020nkzd01)
详细信息
    作者简介:

    杜明成(1995—),男,安徽萧县人,博士研究生,主要从事水文模拟实验研究。E-mail:mingchengd@163.com

    通讯作者:

    王国庆(E-mail:gqwang@nhri.cn

  • 中图分类号: S152.7

Study on the variability of different soil moisture and nutrients in the Northern Anhui Plain

  • 摘要: 黄潮土和砂姜黑土面积占皖北平原总面积的87%。砂姜黑土内部含有钙质结核,严重影响土壤性质进而降低作物产量。从土壤理化性质、土壤水力学参数和土壤水分等方面探讨两种土壤差异性,并结合水文气象因素分析影响黄潮土和砂姜黑土土壤水分变异的驱动因素。结果表明:黄潮土和砂姜黑土的pH值和密度存在显著差异,全氮、全磷、碱解氮含量差异不大;黄潮土0~50 cm的有效持水量显著大于砂姜黑土,保水性更好。黄潮土土壤含水率随深度增加逐渐降低,砂姜黑土土壤含水率随深度增加逐渐增加。影响黄潮土土壤含水率变化的驱动因素是地下水埋深和降水量;影响砂姜黑土土壤含水率变化的驱动因素是地温、地下水埋深和相对湿度。该研究可为进一步改善砂姜黑土土壤性质,提高作物产量提供参考。
  • 图  1  研究区概况及实验站分布

    Figure  1.  General situation of study area and distribution of experimental stations

    图  2  研究区0~100 cm深度的土壤剖面

    Figure  2.  Soil profile at depth of 0~100 cm in study site

    图  3  两种土壤密度对比

    Figure  3.  Comparison of two soil bulk density

    图  4  土壤水分特征曲线

    Figure  4.  Soil moisture characteristics curve

    图  5  土壤含水率随时间动态变化过程

    Figure  5.  Dynamic change process of soil water content over time

    图  6  不同月份的土壤含水率分布

    Figure  6.  Distribution of soil water content in different months

    图  7  土壤含水率与环境因子冗余分析结果

    Figure  7.  Results of redundancy analysis of soil water content and environmental factors

    表  1  不同土壤剖面基本理化性质

    Table  1.   Basic physical and chemical properties of different soil profiles

    土壤类型深度/cmpH值有机质/
    (g·kg−1)
    全磷/
    (g·kg−1)
    全氮/
    (g·kg−1)
    碱解氮/
    (mg·kg−1)
    颗粒组成/%
    黏粒
    (<0.002 mm)
    粉粒
    (0.002~0.020 mm)
    砂粒
    (>0.020 mm)
    黄潮土 0~10 7.76±0.02Ad 15.63±3.17Aa 1.19±0.02Aa 0.86±0.16Aab 33.61±1.37Aa 13.55±2.35Aa 23.81±0.61Aa 62.67±1.86Aa
    10~20 7.79±0.04Acd 9.94±2.32Aab 0.79±0.09Abc 1.00±0.03Aa 22.18±8.41Ab 13.67±1.86Aa 25.00±2.00Aa 61.33±3.18Aa
    20~30 7.81±0.05Acd 8.93±2.61Abc 0.78±0.07Abc 0.77±0.04Aab 9.15±1.00Bc 10.76±2.52Aa 20.55±4.15Aa 68.67±5.78Aa
    30~40 7.86±0.04Abcd 6.23±1.74Abc 0.80±0.15Abc 0.81±0.13Aab 10.75±3.68Ac 12.67±0.33Aa 26.00±1.73Aa 61.33±1.76Aa
    40~50 7.91±0.05Aabc 4.12±1.65Abc 0.72±0.02Ac 0.69±0.08Ab 9.83±1.60Ac 14.00±2.08Aa 23.67±1.33Aa 62.33±1.45Aa
    50~60 7.96±0.01Aab 5.54±1.44Abc 0.86±0.14Abc 0.71±0.10Aab 6.63±1.00Ac 11.67±0.33Aa 23.33±0.33Aa 65.00±0Aa
    60~80 8.02±0.07Aa 6.49±1.93Abc 1.06±0.15Aab 0.73±0.03Aab 6.63±1.00Ac 15.00±2.00Aa 22.67±1.20Aa 62.33±2.96Aa
    80~100 8.02±0.07Aa 3.54±0.74Bc 0.71±0.14Ac 0.83±0.11Aab 5.72±1.27Ac 12.33±0.88Aa 24.67±1.20Aa 63.00±1.00Aa
    砂姜黑土 0~10 5.43±0.08Bd 21.98±2.48Aa 0.62±0.04Ba 0.99±0.08Aa 35.9±8.64Aa 13.00±2.00Aab 25.33±1.67Aab 61.67±0.33Aa
    10~20 5.62±0.13Bd 15.82±2.78Ab 0.77±0.11Aa 1.05±0.02Aa 35.44±6.7Aab 14.00±1.53Aab 26.33±0.88Aab 59.67±1.20Aa
    20~30 7.23±0.16Bc 10.61±1.87Ac 0.58±0.09Aa 0.94±0.06Aab 21.50±2.92Abc 12.33±1.86Aab 28.00±0.58Aa 59.67±2.03Aa
    30~40 7.51±0.1Bbc 9.32±1.88Ac 0.56±0.14Aa 0.77±0.10Abc 15.32±5.73Acd 10.33±0.33Bb 27.33±0.33Aa 62.33±0.33Aa
    40~50 7.75±0.03Bab 6.13±0.72Ac 0.57±0.07Aa 0.67±0.07Acd 11.66±2.06Acd 16.33±2.60Aa 23.00±1.00Ab 60.67±3.48Aa
    50~60 7.78±0.05Aab 6.62±0.92Ac 0.45±0.03Ba 0.77±0.06Abc 12.12±3.89Acd 12.00±2.00Aab 26.00±1.53Aab 62.00±3.51Aa
    60~80 7.69±0.11Aab 6.27±0.44Ac 0.70±0.34Aa 0.75±0.06Abcd 8.92±1.73Acd 12.33±1.20Aab 26.33±2.19Aab 61.33±1.76Aa
    80~100 7.87±0.02Aa 6.46±0.51Ac 0.46±0.09Aa 0.57±0.03Ad 5.72±0.46Ad 15.33±0.67Aab 24.00±1.53Aab 60.67±2.03Aa
      注:小写字母代表不同土层深度之间的差异性显著(p<0.05),大写字母代表相同土层深度不同土壤之间的差异性显著(p<0.05),下同。
    下载: 导出CSV

    表  2  土壤水分特征参数

    Table  2.   Soil moisture characteristics parameters

    土壤类型深度/
    cm
    进气值
    倒数/cm−1
    持水曲线
    形状参数
    饱和含水率/
    (cm3·cm−3)
    残余含水率/
    (cm3·cm−3)
    决定
    系数
    有效持水量/
    (cm3·cm−3)
    田间持水量/
    (cm3·cm−3)
    凋萎含水量/
    (cm3·cm−3)
    重力水/
    (cm3·cm−3)
    黄潮土 0~10 0±0Aab 1.62±0.04Aa 0.40±0.01Ad 0.21±0.02Aab 0.99 0.12±0.01Aa 0.35±0Bd 0.23±0.01Bbc 0.04±0.01Aabc
    10~20 0±0Bab 1.46±0.04Aab 0.41±0.01Acd 0.17±0.01Bab 0.99 0.14±0Aa 0.36±0.01Ad 0.21±0.01Bc 0.06±0.01Aa
    20~30 0±0Aab 1.35±0.17Aab 0.43±0.01Bbc 0.09±0.03Bb 0.99 0.17±0.02Aa 0.39±0.02Bc 0.22±0.03Bc 0.04±0.01Aab
    30~40 0±0Aab 1.39±0.17Aab 0.46±0Aa 0.13±0.06Bab 0.99 0.17±0.03Aa 0.42±0.01Bab 0.25±0.03Bbc 0.04±0.01Aabc
    40~50 0±0Ab 1.29±0.08Ab 0.46±0Aa 0.12±0.06Bab 0.99 0.16±0.02Aa 0.43±0Aa 0.27±0.02Babc 0.03±0Abc
    50~60 0.01±0Aa 1.34±0.06Aab 0.44±0.01Aabc 0.24±0.08Aa 0.99 0.10±0.05Aa 0.4±0Abc 0.30±0.05Aab 0.04±0.01Aabc
    60~80 0±0Aab 1.21±0.09Ab 0.45±0Aab 0.20±0.02Bab 0.99 0.10±0.02Aa 0.42±0Aab 0.33±0.02Aa 0.02±0Ac
    80~100 0±0Aab 1.24±0.09Ab 0.46±0.02Aa 0.20±0.05Aab 0.99 0.10±0.01Aa 0.44±0.01Aa 0.34±0Ba 0.02±0.01Ac
    砂姜黑土 0~10 0.01±0.01Aa 1.14±0.02Ba 0.42±0.01Abc 0.24±0.01Ae 0.99 0.06±0Ba 0.38±0.01Acd 0.33±0.01Ae 0.03±0.01Aa
    10~20 0.03±0.01Aa 1.17±0.02Ba 0.40±0.02Ac 0.30±0Acde 0.99 0.03±0Bb 0.37±0.02Ad 0.34±0.01Ade 0.03±0.01Ba
    20~30 0.09±0.05Aa 1.18±0.02Aa 0.51±0.01Aa 0.40±0.01Aa 0.98 0.03±0Bb 0.47±0.02Aa 0.44±0.02Aa 0.04±0.01Aa
    30~40 0.12±0.05Aa 1.10±0.02Aa 0.50±0.01Aa 0.37±0.01Aabc 0.98 0.03±0Bbc 0.46±0.01Aa 0.43±0.01Aa 0.04±0.01Aa
    40~50 0.08±0.06Aa 1.13±0Aa 0.46±0.01Aabc 0.37±0.01Aab 0.99 0.03±0Bbc 0.43±0.01Aab 0.41±0.01Aab 0.03±0.01Aa
    50~60 0.10±0.08Aa 1.27±0.17Aa 0.48±0.05Aab 0.34±0.02Aabcd 0.97 0.02±0Ac 0.41±0.01Abc 0.39±0.01Abc 0.08±0.06Aa
    60~80 0.08±0.06Aa 1.15±0.05Aa 0.42±0.03Abc 0.32±0.02Abcd 0.98 0.03±0.01Bbc 0.39±0.01Acd 0.37±0.02Acd 0.03±0.02Aa
    80~100 0.01±0Aa 1.13±0.03Aa 0.42±0.01Abc 0.29±0.05Ade 0.97 0.03±0Bbc 0.41±0.01Abc 0.38±0Abc 0.01±0.01Aa
    下载: 导出CSV

    表  3  环境因子对土壤含水率变化的贡献率

    Table  3.   Contribution of environmental factors to soil water content change

    环境因子黄潮土环境因子砂姜黑土
    解释率/%贡献率/%p解释率/%贡献率/%p
    地下水埋深15.243.90.001地温9.736.60.001
    降水量11.934.30.001地下水埋深7.929.90.001
    水汽压差3.610.30.001相对湿度5.119.40.001
    相对湿度2.05.80.002降水量1.55.60.001
    风速1.44.20.001水汽压差1.45.40.001
    日照时数0.30.80.255日照时数0.62.30.001
    蒸发0.30.80.283蒸发0.20.70.023
    风速<0.10.10.447
    下载: 导出CSV
  • [1] TSOZUÉ D, NGHONDA J P, TEMATIO P, et al. Changes in soil properties and soil organic carbon stocks along an elevation gradient at Mount Bambouto, Central Africa[J]. Catena, 2019, 175: 251-262. doi:  10.1016/j.catena.2018.12.028
    [2] 刘涓, 杜静, 魏朝富, 等. 紫色土区土地整理年限对土壤理化特性的影响[J]. 农业工程学报,2015,31(10):254-261 doi:  10.11975/j.issn.1002-6819.2015.10.034

    LIU Juan, DU Jing, WEI Chaofu, et al. Effects of land consolidation period of farmland on soil properties in purple region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 254-261. (in Chinese) doi:  10.11975/j.issn.1002-6819.2015.10.034
    [3] 魏猛, 张爱君, 诸葛玉平, 等. 长期不同施肥对黄潮土区冬小麦产量及土壤养分的影响[J]. 植物营养与肥料学报,2017,23(2):304-312 doi:  10.11674/zwyf.16275

    WEI Meng, ZHANG Aijun, ZHUGE Yuping, et al. Effect of different long-term fertilization on winter wheat yield and soil nutrient contents in yellow fluvo-aquic soil area[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 304-312. (in Chinese) doi:  10.11674/zwyf.16275
    [4] 谷丰, 陈雪娇, 魏翠兰, 等. 砂姜黑土钙质结核剖面分布特征及其对土壤持水性的影响[J]. 农业工程学报,2021,37(6):73-80 doi:  10.11975/j.issn.1002-6819.2021.06.010

    GU Feng, CHEN Xuejiao, WEI Cuilan, et al. Distribution of calcareous concretion in soil profile and their effects on soil water retention in calcic vertisol[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 73-80. (in Chinese) doi:  10.11975/j.issn.1002-6819.2021.06.010
    [5] 陈月明, 高磊, 张中彬, 等. 淮北平原砂姜黑土区砂姜的空间分布及其驱动因素[J]. 土壤学报,2022,59(1):148-160 doi:  10.11766/trxb202004280202

    CHEN Yueming, GAO Lei, ZHANG Zhongbin, et al. Spatial distribution of Shajiang content in Shajiang black soil of Huaibei Plain and its influencing factors[J]. Acta Pedologica Sinica, 2022, 59(1): 148-160. (in Chinese) doi:  10.11766/trxb202004280202
    [6] 魏翠兰, 高伟达, 李录久, 等. 不同初始条件对砂姜黑土收缩特征的影响[J]. 农业机械学报,2017,48(10):229-236,271 doi:  10.6041/j.issn.1000-1298.2017.10.028

    WEI Cuilan, GAO Weida, LI Lujiu, et al. Effects of initial conditions on soil shrinkage characteristic of Shajiang black soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 229-236,271. (in Chinese) doi:  10.6041/j.issn.1000-1298.2017.10.028
    [7] GU F, REN T S, LI B G, et al. Accounting for calcareous concretions in calcic vertisols improves the accuracy of soil hydraulic property estimations[J]. Soil Science Society of America Journal, 2017, 81(6): 1296-1302. doi:  10.2136/sssaj2017.02.0046
    [8] 路璐, 王振龙, 杜富慧, 等. 淮北平原基于水文气象多因子的土壤水分动态预测[J]. 水资源与水工程学报,2019,30(4):237-243

    LU Lu, WANG Zhenlong, DU Fuhui, et al. Dynamic prediction of soil moisture based on hydrometeorological multi-factors in Huaibei Plain[J]. Journal of Water Resources and Water Engineering, 2019, 30(4): 237-243. (in Chinese)
    [9] 张晓萌, 王振龙, 杜富慧, 等. 淮北平原浅埋区地下水埋深对土壤水变化的影响研究[J]. 节水灌溉,2019(9):6-9 doi:  10.3969/j.issn.1007-4929.2019.09.002

    ZHANG Xiaomeng, WANG Zhenlong, DU Fuhui, et al. Study on the influence of groundwater depth on soil water change in shallow buried area of Huaibei plain[J]. Water Saving Irrigation, 2019(9): 6-9. (in Chinese) doi:  10.3969/j.issn.1007-4929.2019.09.002
    [10] DU M C, ZHANG J Y, YANG Q L, et al. Spatial and temporal variation of rainfall extremes for the North Anhui Province Plain of China over 1976–2018[J]. Natural Hazards, 2021, 105(3): 2777-2797. doi:  10.1007/s11069-020-04423-9
    [11] HOWELL T A, DUSEK D A. Comparison of vapor-pressure-deficit calculation methods—southern high Plains[J]. Journal of Irrigation and Drainage Engineering, 1995, 121(2): 191-198. doi:  10.1061/(ASCE)0733-9437(1995)121:2(191)
    [12] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi:  10.2136/sssaj1980.03615995004400050002x
    [13] 朱美玲, 贡璐, 张龙龙. 塔里木河上游典型绿洲土壤酶活性与环境因子相关分析[J]. 环境科学,2015,36(7):2678-2685

    ZHU Meiling, GONG Lu, ZHANG Longlong. Soil enzyme activities and their relationships to environmental factors in a typical oasis in the upper reaches of the Tarim River[J]. Environmental Science, 2015, 36(7): 2678-2685. (in Chinese)
    [14] LEGENDRE P, GALLAGHER E D. Ecologically meaningful transformations for ordination of species data[J]. Oecologia, 2001, 129(2): 271-280. doi:  10.1007/s004420100716
    [15] 马渝欣, 李徐生, 李德成, 等. 皖北平原蒙城县农田土壤有机碳空间变异及影响因素[J]. 土壤学报,2014,51(5):1153-1159

    MA Yuxin, LI Xusheng, LI Decheng, et al. Spatial variation of soil organic carbon content in farmland and its influencing factors in Mengcheng County, northern Anhui plain[J]. Acta Pedologica Sinica, 2014, 51(5): 1153-1159. (in Chinese)
    [16] 杜明成, 王振龙, 姜翠玲, 等. 淮北平原黄潮土多雨强变坡度产流产沙规律试验模拟[J]. 水土保持学报,2018,32(6):34-39 doi:  10.13870/j.cnki.stbcxb.2018.06.006

    DU Mingcheng, WANG Zhenlong, JIANG Cuiling, et al. Simulation of runoff and sediment production regularity of different rainfall intensity and changeable slope gradients in the yellow fluvo-aquic soil of the Huaibei plain[J]. Journal of Soil and Water Conservation, 2018, 32(6): 34-39. (in Chinese) doi:  10.13870/j.cnki.stbcxb.2018.06.006
    [17] 黄爱明, 顾南, 胡永胜, 等. 以降水为基础的淮北浅埋区涝渍分析与评价[J]. 水利水运工程学报,2022(2):21-30

    HUANG Aiming, GU Nan, HU Yongsheng, et al. Evaluation of waterlogging in Huaibei plain based on precipitation analysis[J]. Hydro-Science and Engineering, 2022(2): 21-30. (in Chinese)
    [18] 王怡宁, 杨秒, 王兵, 等. 五道沟地区“蒸发悖论”及成因探析[J]. 灌溉排水学报,2020,39(3):126-133 doi:  10.13522/j.cnki.ggps.2019224

    WANG Yining, YANG Miao, WANG Bing, et al. The “evaporation paradox” in Wudaogou area and its underlying mechanisms[J]. Journal of Irrigation and Drainage, 2020, 39(3): 126-133. (in Chinese) doi:  10.13522/j.cnki.ggps.2019224
    [19] 王振龙, 杜明成, 姜翠玲, 等. 基于人工降雨试验的淮北地区产流产沙差异性研究[J]. 水科学进展,2019,30(4):507-514

    WANG Zhenlong, DU Mingcheng, JIANG Cuiling, et al. Difference of runoff and sediment yield under various experimental conditions for the Huaibei area based on artificial rainfall simulations[J]. Advances in Water Science, 2019, 30(4): 507-514. (in Chinese)
    [20] 杨秒, 王振龙, 吕海深, 等. 淮北平原小麦和大豆生长条件下潜水蒸发实验模拟[J]. 水文,2019,39(4):63-67 doi:  10.3969/j.issn.1000-0852.2019.04.012

    YANG Miao, WANG Zhenlong, LÜ Haishen, et al. Simulation of phreatic evaporation in wheat and soybean during growth period in Huaibei plain[J]. Journal of China Hydrology, 2019, 39(4): 63-67. (in Chinese) doi:  10.3969/j.issn.1000-0852.2019.04.012
    [21] BEYENE A, ADDIS T, KIFLE D, et al. Comparative study of diatoms and macroinvertebrates as indicators of severe water pollution: case study of the Kebena and Akaki rivers in Addis Ababa, Ethiopia[J]. Ecological Indicators, 2009, 9(2): 381-392. doi:  10.1016/j.ecolind.2008.05.001
    [22] CHOI M, JACOBS J M. Spatial soil moisture scaling structure during soil moisture experiment 2005[J]. Hydrological Processes, 2011, 25(6): 926-932. doi:  10.1002/hyp.7877
    [23] 张璐, 朱仲元, 张圣微, 等. 半干旱草原型流域土壤水分变异及其影响因素分析[J]. 农业工程学报,2020,36(13):124-132 doi:  10.11975/j.issn.1002-6819.2020.13.015

    ZHANG Lu, ZHU Zhongyuan, ZHANG Shengwei, et al. Analysis of soil moisture variation and its influencing factors in semi-arid steppe watershed[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 124-132. (in Chinese) doi:  10.11975/j.issn.1002-6819.2020.13.015
  • [1] 王瑞, 郭聚坤, 魏道凯, 卞贵建, 雷胜友, 琼吉, 张庆鑫.  含水率和温度影响下的高原土体力学特性试验研究 . 水利水运工程学报, doi: 10.12170/20210822002
    [2] 白一冰, 石景元, 路川藤, 张功瑾, 丁伟.  “烟花”台风影响下长江南通以下河段的增水分布特征 . 水利水运工程学报, doi: 10.12170/20210930003
    [3] 巩妮娜, 胡少伟, 范向前, 蔡小宁.  配筋率对混凝土Ⅰ-Ⅱ复合型断裂过程声发射特征的影响 . 水利水运工程学报, doi: 10.12170/20191225002
    [4] 张路, 樊恒辉, 车雯方, 张勇, 孟雷, 赵宏伟.  黑龙江地区渠道基土工程性质试验分析 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.02.011
    [5] 刘星志, 吴悦, 潘诗婷, 刘小文, 谷明晗.  颗粒级配对非饱和红土土-水特征曲线的影响 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.05.015
    [6] 李进前, 王起才, 张戎令, 张唐瑜, 王天双, 梁柯鑫.  膨胀土增湿过程中膨胀规律的试验研究 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.03.012
    [7] 苑希民, 李长跃, 田福昌, 王丽娜.  多源洪水耦合模型在防洪保护区洪水分析中的应用 . 水利水运工程学报,
    [8] 张玘璐, 杨赛利, 王立成.  三级配大骨料混凝土双轴抗压性能试验分析 . 水利水运工程学报,
    [9] 贺娟, 王晓松.  基于HEC-RAS及HEC-GeoRAS的溃坝洪水分析 . 水利水运工程学报,
    [10] 胡骏峰.  击实黏土剪切断裂韧度的试验研究 . 水利水运工程学报,
    [11] 徐锴, 范明桥, 林生法, 付冠杰, 魏雁冰.  浙江玉环漩门三期吹填淤泥的工程特性 . 水利水运工程学报,
    [12] 刘依松.  岩垱水库除险加固设计洪水分析 . 水利水运工程学报,
    [13] 刘禹杨, 吴燕, 胡保安, 张铮, 刘银.  疏浚底泥掺外加剂真空预压脱水技术研究 . 水利水运工程学报,
    [14] 苏安双;宁逢伟;韩旭东;丁建彤;蔡跃波.  含水率及加载速率对纤维增韧喷射混凝土弯曲韧性的影响 . 水利水运工程学报,
    [15] 张磊,郭海庆,谢兴华,谈叶飞,邢小弟.  人工降雨入渗边坡破坏试验研究 . 水利水运工程学报,
    [16] 吴永祥,姚惠明,王高旭,沈国昌,施睿,侯保灯.  淮河流域极端旱涝特征分析 . 水利水运工程学报,
    [17] 刘杰.  黄壁庄水库副坝塌陷原因分析 . 水利水运工程学报,
    [18] 王韦,朱满培.  黄材土坝渗流资料分析新方法 . 水利水运工程学报,
    [19] 杨正己.  风浪的统计性质及谱分析 . 水利水运工程学报,
    [20] 严镜海.  低水头枢纽及引水口分水分沙的初步分析 . 水利水运工程学报,
  • 加载中
图(7) / 表 (3)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-28

/

返回文章
返回