留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非黏性沙级配对浊度法测量含沙量的影响

肖千璐 张晓华 郑艳爽 尚红霞 丰青

肖千璐,张晓华,郑艳爽,等. 非黏性沙级配对浊度法测量含沙量的影响[J]. 水利水运工程学报,2023(1):63-71. doi:  10.12170/20211129001
引用本文: 肖千璐,张晓华,郑艳爽,等. 非黏性沙级配对浊度法测量含沙量的影响[J]. 水利水运工程学报,2023(1):63-71. doi:  10.12170/20211129001
(XIAO Qianlu, ZHANG Xiaohua, ZHENG Yanshuang, et al. Influence of non-cohesive sand gradation on the measurement of sediment concentration with turbidity method[J]. Hydro-Science and Engineering, 2023(1): 63-71. (in Chinese)) doi:  10.12170/20211129001
Citation: (XIAO Qianlu, ZHANG Xiaohua, ZHENG Yanshuang, et al. Influence of non-cohesive sand gradation on the measurement of sediment concentration with turbidity method[J]. Hydro-Science and Engineering, 2023(1): 63-71. (in Chinese)) doi:  10.12170/20211129001

非黏性沙级配对浊度法测量含沙量的影响

doi: 10.12170/20211129001
基金项目: 国家自然科学基金资助项目(52009047,51909100);中央级公益性科研院所基本科研业务费专项(HKY-JBYW-2020-03,HKY-JBYW-2020-14,HKY-JBYW-2019-07,HKY-JBYW-2018-11)
详细信息
    作者简介:

    肖千璐(1990—),女,甘肃金昌人,工程师,博士,主要从事泥沙运动力学方面研究。E-mail:519567115@qq.com

    通讯作者:

    张晓华(E-mail:574502473@qq.com

  • 中图分类号: TV123

Influence of non-cohesive sand gradation on the measurement of sediment concentration with turbidity method

  • 摘要: 利用浊度仪测量水流含沙量时,泥沙颗粒级配和矿物成分是影响浊度仪标定结果的主要泥沙因素。采用黄河原型非黏性沙配制不同粒径、不同含沙量浑水水体,开展固定粒径、粗细沙、混合沙等多组次试验研究,对黄河天然沙粒径及级配对浊度仪输出浊度的影响进行定量分析和机制探讨。结果表明:固定含沙量条件下,非黏性泥沙粒径对水体浊度的影响特征符合Mie散射定律;含沙量变化对浊度仪输出浊度的影响数量级为10~102,泥沙颗粒粒径变化对浊度仪输出浊度的影响数量级为10−1~1;相同含沙量条件下,悬沙比表面积与浊度仪输出浊度符合线性分布。建立了考虑非黏性沙级配影响的含沙量与浊度关系模型,能够较准确地反映非黏性沙粒径及泥沙浓度对水体浊度的影响,可为浊度与含沙量关系的准确率定及测量结果的校准提供可靠依据。
  • 图  1  试验原型沙样级配曲线

    Figure  1.  Sediment grading curve for natural sand

    图  2  试验所用原型沙矿物成分玫瑰图

    Figure  2.  Schematic diagram of mineral composition

    图  3  试验装置

    Figure  3.  Experimental devices

    图  4  粗细沙组次S1~S9粗细沙含量比例

    Figure  4.  Proportion of sand content in each group of mixed sand groups S1-S9

    图  5  混合沙组次H1~H3分组沙含量比例

    Figure  5.  Proportion of sand content in each group of mixed sand groups H1-H3

    图  6  A~D组次试验OBS输出浊度与含沙量变化关系

    Figure  6.  Variation trend of OBS output turbidity with sediment concentration in group sediment tests of groups A-D

    图  7  不同含沙量下OBS输出浊度与悬沙粒径的关系

    Figure  7.  Response of OBS output turbidity to sediment gradation under different sediment concentrations

    图  8  S1~S9组次试验OBS输出浊度与悬沙比表面积关系

    Figure  8.  Linear correlation between OBS output turbidity and specific surface area of suspended sediment of groups S1-S9

    图  9  典型粒径条件下OBS输出浊度随含沙量变化计算值与试验值对比

    Figure  9.  Comparison between calculated and experimental values of OBS output turbidity with different sediment concentrations

    表  1  不同粒径及含沙量水体OBS输出浊度试验组次

    Table  1.   OBS output turbidity test groups with different particle sizes and different sediment concentrations

    试验组次试验目的粒径特征粒径级配范围/mm含沙量/(kg·m−3备注
    A组系列 粒径对浊度的影响 分组沙(可视作粒径组均匀沙d75/d15约为1) 0.100~0.150 0.01~50.00 A~D组为系列试验,测量各分组沙不同含沙量条件下浑水浊度
    B组系列 0.075~0.100 0.01~50.00
    B、C组系列 0.050~0.075 0.01~50.00
    D组系列 0.025~0.050 0.01~50.00
    S1组 粗沙和细沙比例差异对浊度的影响 0.100~0.150 mm粗颗粒泥沙与0.025~0.050 mm细颗粒泥沙充分掺混 0.025~0.150 1.00 配制不同比例0.100~0.150 mm粗颗粒泥沙与0.025~0.050 mm细颗粒泥沙混合沙,测量相同含沙量下浑水浊度
    S2组
    S3组
    S4组
    S5组
    S6组
    S7组
    S8组
    S9组
    H1组 多种粒径组合对浊度的影响 4种粒径泥沙充分混合 0.025~0.150 1.00 配制多种粒径组合混合沙,测量不同级配和含沙量浑水浊度
    H2组 1.00
    H3组 2.00
    下载: 导出CSV

    表  2  粗细沙试验组次浊度测定值与计算值

    Table  2.   Calculated and measured values of coarse and fine sand test groups

    试验组次 浊 度试验组次 浊 度
    试验测定浊度/NTU式(8)计算浊度/NTU相对误差/% 试验测定浊度/NTU式(8)计算浊度/NTU相对误差/%
    S1 160.0 158.9 −0.69 S6 196.6 198.1 0.76
    S2 168.5 167.4 −0.65 S7 205.3 206.1 0.39
    S3 174.8 174.3 −0.29 S8 214.0 214.4 0.19
    S4 180.6 182.4 1.00 S9 227.1 224.5 −1.14
    S5 189.6 189.9 0.16
    下载: 导出CSV

    表  3  混合沙试验组次浊度测定值与计算值

    Table  3.   Calculated and measured values of mixed sand test groups

    试验组次比表面积/(cm2·g−1含沙量/(kg·m−3浊 度
    公式计算浊度/NTU试验测定浊度/NTU相对误差/%
    H1124.231.00204.19202.460.86
    H278.971.00169.93171.610.97
    H378.972.00312.67313.840.37
    下载: 导出CSV
  • [1] 刘杰, 纪为刚, 王元叶, 等. 长江口北槽表层悬沙粒径变化及其对OBS标定的影响[J]. 水利水运工程学报,2010(3):84-88 doi:  10.3969/j.issn.1009-640X.2010.03.015

    LIU Jie, JI Weigang, WANG Yuanye, et al. Changes in suspended sediment particle size in the north passage of Yangtze Estuary and the impact on the OBS calibration[J]. Hydro-Science and Engineering, 2010(3): 84-88. (in Chinese) doi:  10.3969/j.issn.1009-640X.2010.03.015
    [2] 张文祥. ADP和OBS观测支持下的长江口悬沙动力过程研究[D]. 上海: 华东师范大学, 2006.

    ZHANG Wenxiang. A study of suspended sediment dynamic processes based on observations using ADP and OBS in the Changjiang Estuary[D]. Shanghai: East China Normal University, 2006. (in Chinese)
    [3] 栾润润, 张瑞波. 基于OBS 3+传感器的实验室含沙量测量系统开发和应用[J]. 水道港口,2017,38(1):94-98 doi:  10.3969/j.issn.1005-8443.2017.01.017

    LUAN Runrun, ZHANG Ruibo. Development and application of laboratory sediment concentration measurement system based on OBS 3+ transducers[J]. Journal of Waterway and Harbor, 2017, 38(1): 94-98. (in Chinese) doi:  10.3969/j.issn.1005-8443.2017.01.017
    [4] 薛元忠, 许卫东. 光学后向散射浊度仪简介及应用研究[J]. 海洋工程,2001,19(2):79-84 doi:  10.3969/j.issn.1005-9865.2001.02.015

    XUE Yuanzhong, XU Weidong. Introduction of OBS and its application study[J]. The Ocean Engineering, 2001, 19(2): 79-84. (in Chinese) doi:  10.3969/j.issn.1005-9865.2001.02.015
    [5] BUNT J A C, LARCOMBE P, JAGO C F. Quantifying the response of optical backscatter devices and transmissometers to variations in suspended particulate matter[J]. Continental Shelf Research, 1999, 19(9): 1199-1220. doi:  10.1016/S0278-4343(99)00018-7
    [6] HATCHER A, HILL P, GRANT J, et al. Spectral optical backscatter of sand in suspension: effects of particle size, composition and colour[J]. Marine Geology, 2000, 168(1-4): 115-128.
    [7] THOMAS S, RIDD P V, RENAGI O. Laboratory investigation on the effect of particle size, water flow and bottom surface roughness upon the response of an upward-pointing optical backscatter sensor to sediment accumulation[J]. Continental Shelf Research, 2003, 23(16): 1545-1557. doi:  10.1016/j.csr.2003.08.001
    [8] 刘红, 何青, 王元叶, 等. 长江口浑浊带海域OBS标定的实验研究[J]. 泥沙研究,2006(5):52-58 doi:  10.3321/j.issn:0468-155X.2006.05.009

    LIU Hong, HE Qing, WANG Yuanye, et al. OBS situ calibration research in the turbidity maximum of the Changjiang Estuary, China[J]. Journal of Sediment Research, 2006(5): 52-58. (in Chinese) doi:  10.3321/j.issn:0468-155X.2006.05.009
    [9] CONNER C S, DE VISSER A M. A laboratory investigation of particle size effects on an optical backscatterance sensor[J]. Marine Geology, 1992, 108(2): 151-159. doi:  10.1016/0025-3227(92)90169-I
    [10] KINEKE G C, STERNBERG R W. Measurements of high concentration suspended sediments using the optical backscatterance sensor[J]. Marine Geology, 1992, 108(3-4): 253-258.
    [11] 曹薇, 李嘉, 李克锋, 等. 利用浊度法测量含沙量及其应用[C]∥第8届全国环境与生态水力学学术研讨会论文集. 北京: 中国水利水电出版社, 2008: 103-108.

    CAO Wei, LI Jia, LI Kefeng. Measurement of sediment concentration by turbidity method and relevant application[C]∥Proceedings of the 8th National Symposium on Environmental and Ecological Hydraulics. Beijing: China Water & Power Press, 2008: 103-108. (in Chinese)
    [12] 丰青, 肖千璐, 郑艳爽, 等. 非恒定挟沙水流床面形态对底切应力影响机制研究[R]. 郑州: 黄河水利委员会黄河水利科学研究院, 2020.

    FENG Qing, XIAO Qianlu, ZHENG Yanshuang, et al. Study on the influence mechanism of bottom shape on bed stress in unsteady sediment laden flow[R]. Zhengzhou: Yellow River Institute of Hydraulic Research, 2020. (in Chinese)
    [13] 顾靖超, 刘学军, 陆立国, 等. 宁夏黄河水浊度与含沙量关系分析[J]. 中国农村水利水电,2016(11):35-37 doi:  10.3969/j.issn.1007-2284.2016.11.009

    GU Jingchao, LIU Xuejun, LU Liguo, et al. An analysis of the relationship between water turbidity and sediment in Ningxia Yellow River[J]. China Rural Water and Hydropower, 2016(11): 35-37. (in Chinese) doi:  10.3969/j.issn.1007-2284.2016.11.009
    [14] 王兆印. 极限悬浮浓度的概念及其在高含沙水流研究中的应用[J]. 水利学报,1991(1):49-55 doi:  10.3321/j.issn:0559-9350.1991.01.010

    WANG Zhaoyin. The concept of limit suspended concentration and its application in the study of hyper-concentrated flow[J]. Journal of Hydraulic Engineering, 1991(1): 49-55. (in Chinese) doi:  10.3321/j.issn:0559-9350.1991.01.010
    [15] 费祥俊. 高浓度浑水的粘滞系数(刚度系数)[J]. 水利学报,1982(3):57-63 doi:  10.3321/j.issn:0559-9350.1982.03.008

    FEI Xiangjun. Viscosity coefficient of hyper-concentration flow[J]. Journal of Hydraulic Engineering, 1982(3): 57-63. (in Chinese) doi:  10.3321/j.issn:0559-9350.1982.03.008
    [16] 刘晓东, 戴景民. Mie散射理论测量粒子系复折射率的透射方法[J]. 红外与激光工程,2009,38(5):820-824 doi:  10.3969/j.issn.1007-2276.2009.05.014

    LIU Xiaodong, DAI Jingmin. Measurement of the complex refractive index of particles based on Mie theory and transmission method[J]. Infrared and Laser Engineering, 2009, 38(5): 820-824. (in Chinese) doi:  10.3969/j.issn.1007-2276.2009.05.014
    [17] 林宏. 海洋悬浮粒子的米氏散射特性及布里渊散射特性研究[D]. 武汉: 华中科技大学, 2007.

    LIN Hong. The study on Mie scattering and Brillouin scattering of oceanic suspended particles[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese)
    [18] MOREL A, GENTILI B, CLAUSTRE H, et al. Optical properties of the “clearest” natural waters[J]. Limnology and Oceanography, 2007, 52(1): 217-229. doi:  10.4319/lo.2007.52.1.0217
    [19] 钱宁, 万兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 1983.

    QIAN Ning, WANG Zhaohui. Mechanics of sediment transport[M]. Beijing: Science Press, 1983. (in Chinese)
    [20] 杨铁笙, 熊祥忠, 詹秀玲, 等. 粘性泥沙悬浮液中颗粒表面滑动层厚度的计算[J]. 水利学报,2002(5):20-25 doi:  10.3321/j.issn:0559-9350.2002.05.005

    YANG Tiesheng, XIONG Xiangzhong, ZHAN Xiuling, et al. The study on slipping water layers of cohesive sediment particles[J]. Journal of Hydraulic Engineering, 2002(5): 20-25. (in Chinese) doi:  10.3321/j.issn:0559-9350.2002.05.005
  • [1] 丰青, 肖千璐, 郑艳爽, 张晓华.  黄河流域黏性泥沙群体沉速计算分析 . 水利水运工程学报, 2023, (): 1-8. doi: 10.12170/20221013002
    [2] 胡智超, 朱沈鸣, 李建雄, 许嘉豪, 王绍斌, 夏春晨.  钱塘江河口盐官段主汛期前含沙量特性研究 . 水利水运工程学报, 2023, (6): 1-9. doi: 10.12170/20221010002
    [3] 赵利安, 王铁力.  粗颗粒煤浆管道输送级配降级及其影响研究 . 水利水运工程学报, 2022, (3): 115-121. doi: 10.12170/20210805003
    [4] 刘勇, 黄君宝, 谢东风, 黄世昌, 应超, 李来武.  基于遥感影像的1307号台风对杭州湾含沙量分布影响 . 水利水运工程学报, 2021, (6): 9-16. doi: 10.12170/20210930001
    [5] 夏云峰, 蔡喆伟, 陈诚, 房红兵, 王驰.  模型试验含沙量量测技术研究 . 水利水运工程学报, 2018, (1): 9-16. doi: 10.16198/j.cnki.1009-640X.2018.01.002
    [6] 张玘璐, 杨赛利, 王立成.  三级配大骨料混凝土双轴抗压性能试验分析 . 水利水运工程学报, 2016, (5): 78-84.
    [7] 李小梅, 关云飞, 凌华, 武颖利.  考虑级配影响的堆石料强度与变形特性 . 水利水运工程学报, 2016, (4): 32-39.
    [8] 夏威夷, 赵晓冬, 张新周.  椒江河口径、潮流变化对含沙量时空分布的影响 . 水利水运工程学报, 2016, (3): 35-45.
    [9] 高祥宇, 高正荣, 窦希萍.  破碎波作用下淤泥含沙量分布试验研究 . 水利水运工程学报, 2014, (4): 38-43.
    [10] 魏丽,卢金友,徐海涛.  不连续宽级配河床垂线流速分布试验研究 . 水利水运工程学报, 2012, (3): 26-31.
    [11] 毛红梅,刘少华,周海燕.  三峡库区泥沙分布规律初探 . 水利水运工程学报, 2012, (5): 67-71.
    [12] 梁斌,陈先朴,邵东超,蔡华.  高速掺气水流的气泡级配 . 水利水运工程学报, 2002, (2): 66-68.
    [13] 刘杰.  混凝土面板坝碎石垫层料最佳级配试验研究 . 水利水运工程学报, 2001, (4): 1-7.
    [14] 于清来,窦国仁.  高含沙河流泥沙数学模型研究 . 水利水运工程学报, 1999, (2): 107-115.
    [15] 吴永进.  NKY─94型γ─射线测沙仪的研制和应用 . 水利水运工程学报, 1996, (2): -.
    [16] 葛祖立.  广级配砂砾滤层保砂性的设计方法 . 水利水运工程学报, 1990, (4): -.
    [17] 刘家驹.  在风浪和潮流作用下淤泥质浅滩含沙量的确定 . 水利水运工程学报, 1988, (2): -.
    [18] 吴永进.  智能γ-射线数字测沙仪的研制及其应用 . 水利水运工程学报, 1986, (4): -.
    [19] 徐明才,姜英山.  光电测沙仪的研究—浸入式探头 . 水利水运工程学报, 1986, (2): -.
    [20] 胡又.  单板微机在含沙量测定中的应用 . 水利水运工程学报, 1986, (3): -.
  • 加载中
图(9) / 表 (3)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  67
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 网络出版日期:  2023-01-05
  • 刊出日期:  2023-02-15

/

返回文章
返回