Review on diagnosis and monitornig methods of structural behavior of superhigh arch dams
-
摘要: 我国已建、在建多座特高拱坝工程,这些工程往往面临着高水头、高边坡和复杂地质条件等特殊服役环境,其设计、施工及安全监控等技术指标突破了现行规范适用范围和以往的工程认知。与一般大坝相比,特高拱坝工程复杂程度高,结构的力学行为具有独特特征,工程建设和运行安全控制要求更为严格。论述了坝体体型工程经验性评价参数、地质力学模型试验、数值模拟仿真分析等特高拱坝结构性态诊断关键技术,以及施工质量控制、温控防裂、跟踪监测反馈等安全监控技术;在此基础上,指出了特高拱坝长效服役健康诊断与安全控制的前沿热点问题,包括时空演化特征挖掘方法、服役风险率实时诊断模型、结构安全动态控制模式、智能感知与超前预警技术等。研究可指导特高拱坝的建设和运行管理。Abstract: Several superhigh arch dams have been built or are under construction in China. These projects are often located in special service environments with high water head, high slope and complex geological conditions. Their technical indicators have broken through the applicable scope of current codes and previous engineering cognition, including design, construction, safety monitoring, etc. Compared with ordinary arch dams, the engineering complexity of superhigh arch dams increases sharply with the dam height, and the structural mechanical behavior has more unique characteristics, leading to stringent requirements of safety control during construction and operation. The key technologies of structural behavior diagnosis of superhigh arch dams have been explored systematically, such as engineering empirical evaluation parameters, geomechanical model tests, numerical simulation analysis. Furthermore, safety control technologies have been deeply investigated, including construction quality control, temperature control and crack prevention, monitoring feedback analysis. On this basis, hot issues of health diagnosis and safety control of superhigh arch dams during future long-term operation are expounded, including the mining of methods of space-time evolution characteristics, real-time diagnosis model of operation risk probability, dynamic control model of structural safety, intelligent perception and early warning technology. The aforementioned research aspects are critical for improving the future intelligent construction and management of superhigh arch dams.
-
Key words:
- superhigh arch dam /
- structural behavior /
- model test /
- numerical simulation /
- safety monitoring
-
表 1 我国特高拱坝工程体型特征
Table 1. Shape characteristics of superhigh arch dams in China
序号 坝名 水平拱型 坝高/m 坝顶弧长/m 拱冠厚度/m 厚高比 弧高比 中心角/° 顶部 底部 1 锦屏一级 抛物线 305.0 552.43 16.00 63.00 0.207 1.811 93.55 2 小湾 抛物线 294.5 892.79 12.00 72.91 0.248 3.032 90.10 3 白鹤滩 椭圆 289.0 708.70 14.00 63.50 0.218 2.450 96.43 4 溪洛渡 抛物线 285.5 581.51 14.00 60.00 0.210 2.037 95.60 5 乌东德 抛物线 270.0 326.95 11.98 51.41 0.190 1.211 101.79 6 拉西瓦 对数螺旋线 250.0 475.80 10.00 49.00 0.196 1.903 92.40 7 二滩 抛物线 240.0 769.00 11.00 55.74 0.232 3.204 91.50 8 构皮滩 抛物线 230.5 552.55 10.25 50.28 0.216 2.377 88.00 9 大岗山 抛物线 210.0 622.42 10.00 52.00 0.248 2.964 93.50 表 2 我国特高拱坝应力水平
Table 2. Maximum principal stresses of superhigh arch dams in China
单位:MPa 序号 坝名 坝基岩性 最大应力 拉应力 压应力 1 锦屏一级 微风化弱卸荷Ⅲ1类大理岩、砂板岩为主 1.19 9.64 2 小湾 微-新黑云母花岗片麻岩、角闪斜长片麻岩为主 1.10 9.80 3 白鹤滩 块状玄武岩为主,河床部位出露角砾熔岩 1.03 8.82 4 溪洛渡 弱风化下段玄武岩为主 1.14 9.20 5 乌东德 灰岩、白云岩、大理岩化白云岩为主 0.99 7.22 6 拉西瓦 花岗岩和变质岩微-新岩体为主 1.18 7.97 7 二滩 正长岩、玄武岩的弱风化下段为主 0.99 8.82 8 构皮滩 灰岩,建于Ⅰ、Ⅱ级岩体,局部Ⅲ级岩体 1.00 7.00 9 大岗山 中、低高程微-新花岗岩,上部为弱风化下段 0.48 6.04 注:拉应力均发生在坝踵、压应力均发生在下游坝面。 -
[1] WANG R K. Key technologies in the design and construction of 300 m ultra-high arch dams[J]. Engineering, 2016, 2(3): 350-359. doi: 10.1016/J.ENG.2016.03.012 [2] 任青文, 王柏乐. 关于拱坝柔度系数的讨论[J]. 河海大学学报(自然科学版),2003,31(1):1-4 REN Qingwen, WANG Baile. Discussion on slenderness coefficient of arch dams[J]. Journal of Hehai University (Natural Sciences), 2003, 31(1): 1-4. (in Chinese) [3] 徐福卫, 田斌. 关于拱坝柔度系数的研究[J]. 人民长江,2007,38(11):41-42, 50 doi: 10.3969/j.issn.1001-4179.2007.11.015 XU Fuwei, TIAN Bin. Research on slenderness coefficient of arch dams[J]. Yangtze River, 2007, 38(11): 41-42, 50. (in Chinese) doi: 10.3969/j.issn.1001-4179.2007.11.015 [4] 张泷, 刘耀儒, 杨强, 等. 基于块体砌筑技术的大岗山高拱坝地质力学模型试验研究[J]. 工程力学,2014,31(8):53-62 doi: 10.6052/j.issn.1000-4750.2013.03-0196 ZHANG Long, LIU Yaoru, YANG Qiang, et al. Research on geomechanical model test of Dagangshan high arch dam based on block masonry technique[J]. Engineering Mechanics, 2014, 31(8): 53-62. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.03-0196 [5] 蒋昱州, 姜小兰, 王瑞红, 等. 乌东德双曲拱坝三维地质力学模型试验研究[J]. 长江科学院院报,2014,31(10):139-145 doi: 10.3969/j.issn.1001-5485.2014.10.022 JIANG Yuzhou, JIANG Xiaolan, WANG Ruihong, et al. Geomechanical model test on global stability of Wudongde double-curvature arch dam[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(10): 139-145. (in Chinese) doi: 10.3969/j.issn.1001-5485.2014.10.022 [6] 程立, 刘耀儒, 潘元炜, 等. 基于模型试验与变形加固理论的高拱坝整体稳定性判据研究[J]. 岩石力学与工程学报,2014,33(11):2225-2235 CHENG Li, LIU Yaoru, PAN Yuanwei, et al. Criterion of global stability of high arch dam structures based on model test and edformation reinforcement theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2225-2235. (in Chinese) [7] 杨宝全, 张林, 陈建叶, 等. 小湾高拱坝整体稳定三维地质力学模型试验研究[J]. 岩石力学与工程学报,2010,29(10):2086-2093 YANG Baoquan, ZHANG Lin, CHEN Jianye, et al. Experimental study of 3d geomechanical model for global stability of Xiaowan high arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2086-2093. (in Chinese) [8] LIN P, SHI J, ZHOU W Y, et al. 3D geomechanical model tests on asymmetric reinforcement and overall stability relating to the Jinping I super-high arch dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 102: 28-41. doi: 10.1016/j.ijrmms.2017.11.017 [9] 段龙海, 张林, 杨宝全, 等. 基于三维地质力学模型试验的溪洛渡高拱坝坝肩稳定性研究[J]. 水电站设计,2010,26(1):60-63 doi: 10.3969/j.issn.1003-9805.2010.01.013 DUAN Longhai, ZHANG Lin, YANG Baoquan, et al. Xiluodu high arch dam abutment stability study based on three dimensional geomechanics model test[J]. Design of Hydroelectric Power Station, 2010, 26(1): 60-63. (in Chinese) doi: 10.3969/j.issn.1003-9805.2010.01.013 [10] 何显松, 马洪琪, 张林, 等. 地质力学模型试验方法与变温相似模型材料研究[J]. 岩石力学与工程学报,2009,28(5):980-986 doi: 10.3321/j.issn:1000-6915.2009.05.014 HE Xiansong, MA Hongqi, ZHANG Lin, et al. Study of test method of geomechanical model and temperature analogous model material[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 980-986. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.05.014 [11] 杨庚鑫, 马德萍, 张林, 等. 地质力学模型试验中软弱结构面内埋式位移系统的研制与应用[J]. 岩土力学,2014,35(3):901-907 YANG Gengxin, MA Deping, ZHANG Lin, et al. Design of structure inbuilt displacement measurement system in geomechanical model test and its application[J]. Rock and Soil Mechanics, 2014, 35(3): 901-907. (in Chinese) [12] LIU Y R, GUAN F H, YANG Q, et al. Geomechanical model test for stability analysis of high arch dam based on small blocks masonry technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 61: 231-243. doi: 10.1016/j.ijrmms.2013.03.003 [13] WANG S G, LIU Y R, ZHOU H W, et al. Experimental study on failure process of arch dam based on acoustic emission technique[J]. Engineering Failure Analysis, 2019, 97: 128-144. doi: 10.1016/j.engfailanal.2019.01.013 [14] 罗荣, 李玉婕, 肖国强, 等. 特高拱坝建基面岩体选择的工程类比法研究[J]. 长江科学院院报,2018,35(7):84-88, 99 doi: 10.11988/ckyyb.20170012 LUO Rong, LI Yujie, XIAO Guoqiang, et al. Criterion of rockmass selection for super-high arch dam foundation based on engineering analogy method[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(7): 84-88, 99. (in Chinese) doi: 10.11988/ckyyb.20170012 [15] 石杰. 特高拱坝柱状节理坝基变形稳定与加固机理研究[D]. 北京: 清华大学, 2018. SHI Jie. Deformation and stability of columnar jointed foundation and reinforcement mechanism of super-high arch dam[D]. Beijing: Tsinghua University, 2018. (in Chinese) [16] 宋子亨, 刘耀儒, 杨强, 等. 白鹤滩拱坝扩大基础加固效果研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4403-4411. SONG Ziheng, LIU Yaoru, YANG Qiang, et al. Study of reinforcement effect analysis of Baihetan arch dam extended foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 2): 4403-4411. (in Chinese) [17] 徐建荣, 赖道平, 吴关叶, 等. 适应柱状节理玄武岩坝基的特高拱坝结构研究[J]. 水力发电学报,2021,40(3):155-164 doi: 10.11660/slfdxb.20210315 XU Jianrong, LAI Daoping, WU Guanye, et al. Study on the super high arch dam structure adapting to the columnar basalt base[J]. Journal of Hydroelectric Engineering, 2021, 40(3): 155-164. (in Chinese) doi: 10.11660/slfdxb.20210315 [18] 林鹏, 李明, 彭浩洋, 等. 特高拱坝基坑回填土石体与大坝作用机制研究[J]. 岩石力学与工程学报,2019,38(增刊2):3680-3689 LIN Peng, LI Ming, PENG Haoyang, et al. Mechanism study between earth-rock mixture in pit backfill and super-high arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Suppl2): 3680-3689. (in Chinese) [19] 黄伟, 魏鹏程. 特高拱坝全坝基无盖重固结灌浆关键技术[J]. 清华大学学报(自然科学版),2020,60(7):582-588 HUANG Wei, WEI Pengcheng. Key methods for non-cover-weight consolidation grouting of super high dam foundations[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(7): 582-588. (in Chinese) [20] 邹丽春. 高拱坝设计理论与工程实践[M]. 北京: 中国水利水电出版社, 2017. ZOU Lichun. Theory and project practice of high arch dam[M]. Beijing: China Water Power Press, 2017. (in Chinese) [21] 刘耀儒, 王峻, 杨强, 等. 小湾拱坝坝体裂缝对拱坝受力和稳定的影响研究[J]. 岩石力学与工程学报,2010,29(6):1132-1139 LIU Yaoru, WANG Jun, YANG Qiang, et al. Research on influences of cracking of Xiaowan arch dam on its stress and stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1132-1139. (in Chinese) [22] LIN P, GUAN J F, PENG H Y, et al. Horizontal cracking and crack repair analysis of a super high arch dam based on fracture toughness[J]. Engineering Failure Analysis, 2019, 97: 72-90. doi: 10.1016/j.engfailanal.2019.01.036 [23] 常强. 高拱坝关键区域局部破损分析[D]. 北京: 清华大学, 2015. CHANG Qiang. Local failure mode analysis for the key area of high arch dam[D]. Beijing: Tsinghua University, 2015. (in Chinese) [24] LI Z Y, HU Z Q, LIN G, et al. A scaled boundary finite element method procedure for arch dam-water-foundation rock interaction in complex layered half-space[J]. Computers and Geotechnics, 2022, 141: 104524. doi: 10.1016/j.compgeo.2021.104524 [25] 潘坚文. 高混凝土坝静动力非线性断裂与地基辐射阻尼模拟研究[D]. 北京: 清华大学, 2010. PAN Jianwen. Nonlinear static and seismic fracture analysis of high concrete dams and modeling of radiation damping for foundation[D]. Beijing: Tsinghua University, 2010. (in Chinese) [26] ZEINIZADEH A, MIRZABOZORG H, NOORZAD A, et al. Hydrodynamic pressures in contraction joints including waterstops on seismic response of high arch dams[J]. Structures, 2018, 14: 1-14. doi: 10.1016/j.istruc.2018.01.005 [27] GUO S S, LIANG H, WU S, et al. Seismic damage investigation of arch dams under different water levels based on massively parallel computation[J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105917. doi: 10.1016/j.soildyn.2019.105917 [28] WANG J T, JIN A Y, DU X L, et al. Scatter of dynamic response and damage of an arch dam subjected to artificial earthquake accelerograms[J]. Soil Dynamics and Earthquake Engineering, 2016, 87: 93-100. doi: 10.1016/j.soildyn.2016.05.003 [29] 宋胜武, 冯学敏, 向柏宇, 等. 西南水电高陡岩石边坡工程关键技术研究[J]. 岩石力学与工程学报,2011,30(1):1-22 SONG Shengwu, FENG Xuemin, XIANG Baiyu, et al. Research on key technologies for high and steep rock slopes of hydropower engineering in Southwest China[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 1-22. (in Chinese) [30] 林鹏, 石杰, 周华, 等. 乌东德坝肩结构面影响及协调加固稳定分析[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3937-3946. LIN Peng, SHI Jie, ZHOU Hua, et al. Stability analysis on structural plane effects and compatible reinforcement relating to Wudongde Dam abutments[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Suppl2): 3937-3946. (in Chinese) [31] 林鹏, 石杰, 宁泽宇, 等. 不利结构面对高拱坝整体稳定影响及加固分析[J]. 水力发电学报,2019,38(5):27-36 doi: 10.11660/slfdxb.20190504 LIN Peng, SHI Jie, NING Zeyu, et al. Influence of adverse structural planes on overall stability and abutment reinforcement[J]. Journal of Hydroelectric Engineering, 2019, 38(5): 27-36. (in Chinese) doi: 10.11660/slfdxb.20190504 [32] 黄志刚, 周钟, 张建海, 等. 锦屏一级高拱坝坝肩刚体弹簧元动力抗滑稳定分析[J]. 西南科技大学学报,2015,30(4):93-99 doi: 10.3969/j.issn.1671-8755.2015.04.021 HUANG Zhigang, ZHOU Zhong, ZHANG Jianhai, et al. Rigid body spring element method for dynamic anti-sliding analysis of Jinping I arch dam abutment[J]. Journal of Southwest University of Science and Technology, 2015, 30(4): 93-99. (in Chinese) doi: 10.3969/j.issn.1671-8755.2015.04.021 [33] 甘海阔, 赖国伟, 李业盛. 基于三维有限差分法的小湾拱坝施工步模拟及极限承载分析[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3918-3927. GAN Haikuo, LAI Guowei, LI Yesheng. Construction process simulation and ultimate bearing capacity analysis of Xiaowan arch dam by 3D finite difference method[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl2): 3918-3927. (in Chinese) [34] 何柱, 刘耀儒, 邓检强, 等. 基于黏塑性损伤模型的高拱坝长期稳定性评价[J]. 中国科学:技术科学,2015,45(10):1105-1110 doi: 10.1360/N092015-00017 HE Zhu, LIU Yaoru, DENG Jianqiang, et al. Evaluation of long-term stability for high arch dam based on the viscoplasticity damage model[J]. Scientia Sinica (Technologica), 2015, 45(10): 1105-1110. (in Chinese) doi: 10.1360/N092015-00017 [35] 程立, 刘耀儒, 吕庆超, 等. 特高拱坝非平衡演化的变形稳定控制理论及应用[J]. 水力发电,2019,45(10):53-58, 115 doi: 10.3969/j.issn.0559-9342.2019.10.012 CHENG Li, LIU Yaoru, LÜ Qingchao, et al. Theory and application of deformation stability control of non-equilibrium evolution for super high arch dams[J]. Water Power, 2019, 45(10): 53-58, 115. (in Chinese) doi: 10.3969/j.issn.0559-9342.2019.10.012 [36] WANG J T, ZHANG M X, JIN A Y, et al. Seismic fragility of arch dams based on damage analysis[J]. Soil Dynamics and Earthquake Engineering, 2018, 109: 58-68. doi: 10.1016/j.soildyn.2018.01.018 [37] LIANG H, TU J, GUO S S, et al. Seismic fragility analysis of a high arch dam-foundation system based on seismic instability failure mode[J]. Soil Dynamics and Earthquake Engineering, 2020, 130: 105981. doi: 10.1016/j.soildyn.2019.105981 [38] JIN A Y, PAN J W, WANG J T, et al. Effect of foundation models on seismic response of arch dams[J]. Engineering Structures, 2019, 188: 578-590. doi: 10.1016/j.engstruct.2019.03.048 [39] XU Q, ZHANG T R, CHEN J Y, et al. The influence of reinforcement strengthening on seismic response and index correlation for high arch dams by endurance time analysis method[J]. Structures, 2021, 32: 355-379. doi: 10.1016/j.istruc.2021.03.007 [40] 张冲, 王仁坤, 汤雪娟. 溪洛渡特高拱坝蓄水初期工作状态评价[J]. 水利学报,2016,47(1):85-93 ZHANG Chong, WANG Renkun, TANG Xuejuan. Safety evaluation of Xiluodu ultra-high arch dam during the initial impoundment period[J]. Journal of Hydraulic Engineering, 2016, 47(1): 85-93. (in Chinese) [41] 刘有志, 张国新, 程恒, 等. 特高拱坝谷幅缩窄成因及对大坝变形和应力的影响分析[C]∥高坝建设与运行管理的技术进展. 郑州: 黄河水利出版社, 2014: 51-60. LIU Youzhi, ZHANG Guoxin, CHENG Heng, et al. Analysis on causes of valley width narrowing of superhigh arch dam and its influence on dam deformation and stress[C]∥Technical Progress of High Dam Construction and Operation Management. Zhengzhou: The Yellow River Water Conservancy Press, 2014: 51-60. (in Chinese) [42] 杨强, 潘元炜, 程立, 等. 高拱坝谷幅变形机制及非饱和裂隙岩体有效应力原理研究[J]. 岩石力学与工程学报,2015,34(11):2258-2269 YANG Qiang, PAN Yuanwei, CHENG Li, et al. Mechanism of valley deformation of high arch dam and effective stress principle for unsaturated fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2258-2269. (in Chinese) [43] 辛长虹, 赵引. 考虑非饱和渗流的谷幅变形对高拱坝影响分析[J]. 水利水运工程学报,2021(4):36-45 doi: 10.12170/20210114003 XIN Changhong, ZHAO Yin. Analysis of the influence of valley width deformation on high arch dam considering unsaturated seepage[J]. Hydro-Science and Engineering, 2021(4): 36-45. (in Chinese) doi: 10.12170/20210114003 [44] 张国新, 程恒, 周秋景, 等. 高拱坝蓄水期谷幅时效变形机理分析[J]. 中国科技论文,2019,14(1):77-84 doi: 10.3969/j.issn.2095-2783.2019.01.014 ZHANG Guoxin, CHENG Heng, ZHOU Qiujing, et al. Analysis of mechanism of valley creep deformation of high arch dam during impoundment[J]. China Sciencepaper, 2019, 14(1): 77-84. (in Chinese) doi: 10.3969/j.issn.2095-2783.2019.01.014 [45] 钟大宁, 刘耀儒, 杨强, 等. 白鹤滩拱坝谷幅变形预测及不同计算方法变形机制研究[J]. 岩土工程学报,2019,41(8):1455-1463 ZHONG Daning, LIU Yaoru, YANG Qiang, et al. Prediction of deformation of valley width of Baihetan arch dam and deformation mechanisms of several methods[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1455-1463. (in Chinese) [46] 黄平, 李正兵. 锦屏一级水电站特高拱坝建基面f2断层综合处理技术[C]∥中国水利学会地基与基础工程专业委员会第12次全国学术会议. 北京: 中国水利水电出版社, 2013: 421-427. HUANG Ping, LI Zhengbing. Comprehensive treatment technology of f2 fault on the foundation surface of superhigh arch dam of Jinping I Hydropower Station[C]∥The 12th National Academic Conference of Foundation and Basic Engineering Committee of Chinese Hydraulic Engineering Society. Beijing: China Water & Power Press, 2013: 421-427. (in Chinese) [47] 李仁鸿, 唐兰, 侯波, 等. 锦屏一级水电站300 m级高拱坝渗流控制工程措施[J]. 水电站设计,2012,28(4):7-11 doi: 10.3969/j.issn.1003-9805.2012.04.002 LI Renhong, TANG Lan, HOU Bo, et al. Seepage control engineering measures of 300 m high arch dam of Jinping I Hydropower Station[J]. Design of Hydroelectric Power Station, 2012, 28(4): 7-11. (in Chinese) doi: 10.3969/j.issn.1003-9805.2012.04.002 [48] HE M J, LI H, XU J R, et al. Estimation of unloading relaxation depth of Baihetan Arch Dam foundation using long-short term memory network[J]. Water Science and Engineering, 2021, 14(2): 149-158. doi: 10.1016/j.wse.2021.06.003 [49] 魏鹏程, 林鹏, 汪志林, 等. 白鹤滩特高拱坝坝基灌浆时机与抬动控制[J]. 清华大学学报(自然科学版),2020,60(7):557-565 WEI Pengcheng, LIN Peng, WANG Zhilin, et al. Foundation grouting times and uplift control of the Baihetan super-high arch dam[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(7): 557-565. (in Chinese) [50] 樊启祥, 张超然, 陈文斌, 等. 乌东德及白鹤滩特高拱坝智能建造关键技术[J]. 水力发电学报,2019,38(2):22-35 doi: 10.11660/slfdxb.20190203 FAN Qixiang, ZHANG Chaoran, CHEN Wenbin, et al. Key technologies of intelligent construction of Wudongde and Baihetan super high arch dams[J]. Journal of Hydroelectric Engineering, 2019, 38(2): 22-35. (in Chinese) doi: 10.11660/slfdxb.20190203 [51] 谭尧升, 樊启祥, 汪志林, 等. 白鹤滩特高拱坝智能建造技术与应用实践[J]. 清华大学学报(自然科学版),2021,61(7):694-704 TAN Yaosheng, FAN Qixiang, WANG Zhilin, et al. Intelligent construction methods for the Baihetan super high arch dam[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(7): 694-704. (in Chinese) [52] 王继敏, 段绍辉, 胡书红, 等. 锦屏一级水电站特高拱坝温控防裂技术与实践[J]. 水利水电技术,2013,44(12):41-46 doi: 10.3969/j.issn.1000-0860.2013.12.011 WANG Jimin, DUAN Shaohui, HU Shuhong, et al. Practice and technology of temperature control and anti-cracking for super-high arch dam of Jinping I Hydropower Station[J]. Water Resources and Hydropower Engineering, 2013, 44(12): 41-46. (in Chinese) doi: 10.3969/j.issn.1000-0860.2013.12.011 [53] 张国新, 刘有志, 刘毅, 等. 特高拱坝施工期裂缝成因分析与温控防裂措施讨论[J]. 水力发电学报,2010,29(5):45-51 ZHANG Guoxin, LIU Youzhi, LIU Yi, et al. Analysis on the causes of crack formation and the methods of temperature control and crack prevention during construction of super-high arch dams[J]. Journal of Hydroelectric Engineering, 2010, 29(5): 45-51. (in Chinese) [54] 张国新, 樊启祥, 刘有志, 等. 特高拱坝温控标准与措施的优化研究[J]. 水利学报, 2012, 43(增刊1): 52-58. ZHANG Guoxin, FAN Qixiang, LIU Youzhi, et al. Discusion for standard and measure of temperature controlling in super-high arch dams[J]. Journal of Hydraulic Engineering, 2012, 43(Suppl1): 52-58. (in Chinese) [55] 杨萍, 刘玉, 李金桃, 等. 溪洛渡拱坝后期温度回升影响因子及权重分析[C]∥高坝建设与运行管理的技术进展. 郑州: 黄河水利出版社, 2014: 275-285. YANG Ping, LIU Yu, LI Jintao, et al. Analysis of influencing factors and weights of temperature rise in late stage of Xiluodu arch dam[C]∥Technical Progress of High Dam Construction and Operation Management. Zhengzhou: The Yellow River Water Conservancy Press, 2014: 275-285. (in Chinese) [56] 樊启祥, 邬昆, 陈文夫. 溪洛渡特高拱坝混凝土保温技术研究与应用[J]. 水力发电学报,2019,38(4):213-223 doi: 10.11660/slfdxb.20190420 FAN Qixiang, WU Kun, CHEN Wenfu. Study and application of superficial thermal insulation of Xiluodu super high arch dam concrete[J]. Journal of Hydroelectric Engineering, 2019, 38(4): 213-223. (in Chinese) doi: 10.11660/slfdxb.20190420 [57] 胡波, 刘观标, 王思敬, 等. 基于原型监测的特高拱坝软弱带置换效果评价[J]. 水利学报,2011,42(7):876-882 HU Bo, LIU Guanbiao, WANG Sijing, et al. Evaluation and research on replacement reinforcement quality at abutment of ultra-high arch dam based on prototype monitoring[J]. Journal of Hydraulic Engineering, 2011, 42(7): 876-882. (in Chinese) [58] 马克, 王龙江, 庄端阳, 等. 大岗山水电站高拱坝蓄水初期工作性态演化研究[J]. 岩石力学与工程学报,2019(9):1776-1785 MA Ke, WANG Longjiang, ZHUANG Duanyang, et al. Study on working performance evaluation of the high arch dam of Dagangshan hydropower station during the initial impoundment period[J]. Chinese Journal of Rock Mechanics and Engineering, 2019(9): 1776-1785. (in Chinese) [59] ZHUANG D Y, MA K, TANG C N, et al. Study on crack formation and propagation in the galleries of the Dagangshan high arch dam in Southwest China based on microseismic monitoring and numerical simulation[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 157-172. doi: 10.1016/j.ijrmms.2018.11.016 [60] 王继敏, 顾冲时, 张晨, 等. 基于面板时空模型的锦屏一级大坝变形性态分析[J]. 水力发电学报,2020,39(11):21-30 WANG Jimin, GU Chongshi, ZHANG Chen, et al. Deformation behavior analysis of Jinping arch dam based on spatiotemporal model of variable intercept panel data[J]. Journal of Hydroelectric Engineering, 2020, 39(11): 21-30. (in Chinese) [61] LI H K, WANG G, WEI B W, et al. Dynamic inversion method for the material parameters of a high arch dam and its foundation[J]. Applied Mathematical Modelling, 2019, 71: 60-76. doi: 10.1016/j.apm.2019.02.008 [62] ZHAO E F, WU C Q. Unified egg ellipse critical threshold estimation for the deformation behavior of ultrahigh arch dams[J]. Engineering Structures, 2020, 214: 110598. doi: 10.1016/j.engstruct.2020.110598 [63] ZHAO E F, WU C Q. Risk probabilistic assessment of ultrahigh arch dams through regression panel modeling on deformation behavior[J]. Structural Control and Health Monitoring, 2021, 28: e2716. -