留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桩承式加筋路堤荷载分担计算改进模型

姜彦彬 何宁 钱亚俊 张中流 王艳芳

姜彦彬,何宁,钱亚俊,等. 桩承式加筋路堤荷载分担计算改进模型[J]. 水利水运工程学报. doi:  10.12170/20211206001
引用本文: 姜彦彬,何宁,钱亚俊,等. 桩承式加筋路堤荷载分担计算改进模型[J]. 水利水运工程学报. doi:  10.12170/20211206001
(JIANG Yanbin, HE Ning, QIAN Yajun, et al. Modified load sharing calculation model of geosynthetic-reinforced and pile-supported embankments[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20211206001
Citation: (JIANG Yanbin, HE Ning, QIAN Yajun, et al. Modified load sharing calculation model of geosynthetic-reinforced and pile-supported embankments[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20211206001

桩承式加筋路堤荷载分担计算改进模型

doi: 10.12170/20211206001
基金项目: 国家自然科学基金青年科学基金项目(52208346,51908278);江苏省高等学校基础科学(自然科学)研究面上项目(22KJB560017);水利部水旱灾害防御重点实验室开放基金(KYFB202112071053);金陵科技学院高层次人才科研项目(jit-b-202130,jit-fhxm-202106)
详细信息
    作者简介:

    姜彦彬(1989—),男,山东临沂人,讲师,博士,主要从事地基处理方面的研究。E-mail:tumujyb@163.com

  • 中图分类号: TU43

Modified load sharing calculation model of geosynthetic-reinforced and pile-supported embankments

  • 摘要: 基于桩间的土拱效应与加筋效应开展融合分析,建立了桩承式加筋路堤荷载分担计算的改进Hewlett模型。首先,根据土拱是否处于塑性状态,结合桩-土竖向受力平衡条件,分别求解球形拱和平面拱控制方程,并对路堤荷载进行初分配。然后,假定加筋带上覆荷载为更符合实际工况的倒三角形分布,并使用文克勒地基模型考虑加筋带影响范围内的桩间土反力,无需预设土工加筋挠度形式,即可构建并求解土工加筋受力平衡控制微分方程,进而由加筋效应对路堤荷载进行再分配。综合工程实例验证与讨论,并通过多模型对比分析,表明改进模型能够合理预测荷载分担与土工加筋受力结果。参数分析表明,改进模型能够合理地预测几何、材料参数变化对桩承式加筋路堤荷载分担的影响。
  • 图  1  半球壳形土拱模型

    Figure  1.  Hemispherical shell soil arching model

    图  2  土工加筋计算单元

    Figure  2.  Calculation unit of geotechnical reinforcement

    图  3  加筋效应计算模型

    Figure  3.  Calculation model of reinforcement effect

    图  4  实例1与实例2的路堤荷载对比

    Figure  4.  Comparison of embankment load filling of case 1 and case 2

    图  5  解析模型参数分析

    Figure  5.  Parametric study of the analytical model

    表  1  实例模型计算参数

    Table  1.   Calculation model parameters of four cases

    实例路堤填高/
    m
    路堤土平均重度/
    (kN·m−3)
    被动土压力
    系数
    (等效)桩
    间距/m
    (等效)桩帽
    边长 /m
    加筋抗拉强度/
    (kN·m−1)
    地基反应系数/
    (kN·m−3)
    实例15.6018.53.003.0000.886590@4%534
    实例24.2620.03.552.2331.000500@3%361
    实例35.3527.55.832.0000.7002 000852
    实例42.7018.03.690.6000.130800236
    下载: 导出CSV

    表  2  模型对比验证

    Table  2.   Model comparison and validation

    项目σP/kPaEFgr/kN$ \overline \varepsilon $
    实例1本文解7570.641014.06%
    实例1实测值6740.58//
    实例2本文解3460.81503.05%
    实例2实测值3520.83//
    下载: 导出CSV

    表  3  不同模型的对比验证

    Table  3.   Comparison and validation of different models

    参数实测值本文解Low等[24]BS8006 (2010)EBGEO (2011)CUR226 (2016)
    Tmax(实例3)33.631.232.0110.930.69.7
    Tmax(实例4)27.125.680.0129.7102.024.0
    E(实例1)0.580.640.560.660.630.65
      注:Tmax为土工加筋最大拉力(kN/m); E为桩体荷载分担系数,无量纲。
    下载: 导出CSV
  • [1] 姜彦彬, 何宁, 汪璋淳, 等. 加筋路堤下刚性桩复合地基若干有限元建模类型分析[J]. 岩土工程学报,2020,42(11):2106-2114

    JIANG Yanbin, HE Ning, WANG Zhangchun, et al. Finite element modelling types for rigid pile composite foundation under geosynthetic-reinforced embankment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2106-2114. (in Chinese)
    [2] HEWLETT W J, RANDOLPH M F. Analysis of piled embankments[J]. Ground Engineering, 1988, 21(3): 12-18.
    [3] 陈云敏, 贾宁, 陈仁朋. 桩承式路堤土拱效应分析[J]. 中国公路学报,2004,17(4):1-6 doi:  10.3321/j.issn:1001-7372.2004.04.001

    CHEN Yunmin, JIA Ning, CHEN Renpeng. Soil arch analysis of pile-supported embankments[J]. China Journal of Highway and Transport, 2004, 17(4): 1-6. (in Chinese) doi:  10.3321/j.issn:1001-7372.2004.04.001
    [4] 赖汉江, 郑俊杰, 崔明娟, 等. 改进的桩承式加筋路堤荷载传递效应计算方法[J]. 华中科技大学学报(自然科学版),2016,44(2):92-96 doi:  10.13245/j.hust.160219

    LAI Hanjiang, ZHENG Junjie, CUI Mingjuan, et al. Improved calculation method for load-transfer effect of reinforced piled embankments[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(2): 92-96. (in Chinese) doi:  10.13245/j.hust.160219
    [5] 李波, 黄茂松, 叶观宝. 加筋桩承式路堤的三维土拱效应分析与试验验证[J]. 中国公路学报,2012,25(1):13-20 doi:  10.3969/j.issn.1001-7372.2012.01.003

    LI Bo, HUANG Maosong, YE Guanbao. Analysis of three-dimensional soil arching effect of pile-supported embankment with geosynthetics and its test verification[J]. China Journal of Highway and Transport, 2012, 25(1): 13-20. (in Chinese) doi:  10.3969/j.issn.1001-7372.2012.01.003
    [6] 周龙翔, 王梦恕, 张顶立, 等. 复合地基土拱效应与桩土应力比研究[J]. 土木工程学报,2011,44(1):93-99 doi:  10.15951/j.tmgcxb.2011.01.017

    ZHOU Longxiang, WANG Mengshu, ZHANG Dingli, et al. Study of the soil arching effect and the pile-soil stress ratio of composite ground[J]. China Civil Engineering Journal, 2011, 44(1): 93-99. (in Chinese) doi:  10.15951/j.tmgcxb.2011.01.017
    [7] ZHUANG Y, WANG K Y, LIU H L. A simplified model to analyze the reinforced piled embankments[J]. Geotextiles and Geomembranes, 2014, 42(2): 154-165. doi:  10.1016/j.geotexmem.2014.01.002
    [8] ZHUANG Y, CUI X Y. Analysis and modification of the Hewlett and Randolph method[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 2015, 168(2): 144-157. doi:  10.1680/geng.14.00014
    [9] LIU W Z, QU S, ZHANG H, et al. An integrated method for analyzing load transfer in geosynthetic-reinforced and pile-supported embankment[J]. KSCE Journal of Civil Engineering, 2017, 21(3): 687-702. doi:  10.1007/s12205-016-0605-3
    [10] RUI R, VAN TOL F, XIA Y Y, et al. Evolution of soil arching: 2D analytical models[J]. International Journal of Geomechanics, 2018, 18(6): 04018056. doi:  10.1061/(ASCE)GM.1943-5622.0001169
    [11] 赵明华, 刘猛, 张锐, 等. 路堤荷载下双向增强复合地基荷载分担比及沉降计算[J]. 岩土工程学报,2014,36(12):2161-2169 doi:  10.11779/CJGE201412002

    ZHAO Minghua, LIU Meng, ZHANG Rui, et al. Calculation of load sharing ratio and settlement of bidirectional reinforced composite foundation under embankment loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2161-2169. (in Chinese) doi:  10.11779/CJGE201412002
    [12] VAN EEKELEN S J M, BEZUIJEN A, LODDER H J, et al. Model experiments on piled embankments. Part I[J]. Geotextiles and Geomembranes, 2012, 32: 69-81. doi:  10.1016/j.geotexmem.2011.11.002
    [13] VAN EEKELEN S J M, BEZUIJEN A, VAN TOL A F. An analytical model for arching in piled embankments[J]. Geotextiles and Geomembranes, 2013, 39: 78-102. doi:  10.1016/j.geotexmem.2013.07.005
    [14] VAN EEKELEN S J M, BEZUIJEN A, VAN TOL A F. Validation of analytical models for the design of basal reinforced piled embankments[J]. Geotextiles and Geomembranes, 2015, 43(1): 56-81. doi:  10.1016/j.geotexmem.2014.10.002
    [15] CHEN R P, CHEN Y M, HAN J, et al. A theoretical solution for pile-supported embankments on soft soils under one-dimensional compression[J]. Canadian Geotechnical Journal, 2008, 45(5): 611-623. doi:  10.1139/T08-003
    [16] PHAM T A, DIAS D. Comparison and evaluation of analytical models for the design of geosynthetic-reinforced and pile-supported embankments[J]. Geotextiles and Geomembranes, 2021, 49(3): 528-549. doi:  10.1016/j.geotexmem.2020.11.001
    [17] LIU H L, NG C W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493. doi:  10.1061/(ASCE)1090-0241(2007)133:12(1483)
    [18] 娄炎, 何宁, 娄斌. 高速公路深厚软基工后沉降控制成套技术[M]. 北京: 人民交通出版社, 2011

    LOU Yan, HE Ning, LOU Bin. Complete settlement control technology for deep soft foundation of expressway[M]. Beijing: China Communications Press, 2011. (in Chinese)
    [19] ZHANG C L, JIANG G L, LIU X F, et al. Arching in geogrid-reinforced pile-supported embankments over silty clay of medium compressibility: field data and analytical solution[J]. Computers & Geotechnics, 2016, 77: 11-25.
    [20] HOSSEINPOUR I, ALMEIDA M S S, RICCIO M. Full-scale load test and finite-element analysis of soft ground improved by geotextile-encased granular columns[J]. Geosynthetics International, 2015, 22(6): 428-438. doi:  10.1680/jgein.15.00023
    [21] OH Y I, SHIN E C. Reinforcement and arching effect of geogrid-reinforced and pile-supported embankment on marine soft ground[J]. Marine Georesources & Geotechnology, 2007, 25(2): 97-118.
    [22] ZHOU M, LIU H L, CHEN Y M, et al. First application of cast-in-place concrete large-diameter pipe (PCC) pile-reinforced railway foundation: a field study[J]. Canadian Geotechnical Journal, 2016, 53(4): 708-716. doi:  10.1139/cgj-2014-0547
    [23] ARIYARATHNE P, LIYANAPATHIRANA D S. Review of existing design methods for geosynthetic-reinforced pile-supported embankments[J]. Soils and Foundations, 2015, 55(1): 17-34. doi:  10.1016/j.sandf.2014.12.002
    [24] Low B K, Tang S K, Choa V. Arching in piled embankments[J]. Journal of Geotechnical Engineering, 1994, 120(11): 1917-1938. doi:  10.1061/(ASCE)0733-9410(1994)120:11(1917)
    [25] 姜彦彬, 何宁, 许滨华, 等. 桩承式加筋路堤有限元几何建模方法及边坡效应研究[J]. 水利水运工程学报,2020(1):84-91 doi:  10.12170/20181206001

    JIANG Yanbin, HE Ning, XU Binhua, et al. Geometrical modelling with finite element method and slope effect of geosynthetic reinforced and pile-supported embankments[J]. Hydro-Science and Engineering, 2020(1): 84-91. (in Chinese) doi:  10.12170/20181206001
  • [1] 宋玉鹏, 宋丙辉, 孙永福, 周其坤, 王振豪.  重复插拔桩引发粉质海床扰动效应研究 . 水利水运工程学报, doi: 10.12170/20200804002
    [2] 章航, 王志亮, 卢志堂, 熊峰, 巫绪涛.  循环冲击荷载下花岗岩力学特性尺寸效应 . 水利水运工程学报, doi: 10.12170/20190121002
    [3] 姜彦彬, 何宁, 耿之周, 蔡忍, 任国峰, 石北啸.  PCC桩复合地基离心模型制备及桩土接触模拟 . 水利水运工程学报, doi: 10.12170/20190121001
    [4] 姜彦彬, 何宁, 许滨华, 张中流, 耿之周, 石北啸.  桩承式加筋路堤有限元几何建模方法及边坡效应研究 . 水利水运工程学报, doi: 10.12170/20181206001
    [5] 唐彤芝, 明经平, 关云飞, 赵维炳.  混凝土芯砂石桩振动沉管成桩效应及其累积特性研究 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2019.01.003
    [6] 张壮, 潘毅, 陈永平, 胡玉植, 张同鑫, 李琳.  高速明渠流条件下高性能加筋草皮抗侵蚀特性研究 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.06.010
    [7] 何亮, 景宏彬, 李国英.  加筋堆石料的动力残余变形特性 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.04.003
    [8] 张同鑫, 潘毅, 张壮, 苏致远, 王倩, 徐圣卓, 胡玉植, 陈永平.  加筋生态护坡技术的应用与发展 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2017.06.016
    [9] 胡玉植, 潘毅, 陈永平.  海堤背水坡加筋草皮抗冲蚀能力试验研究 . 水利水运工程学报,
    [10] 张中流, 刘慈军, 何宁, 周彦章, 国建飞, 周玉娟.  基于MATLAB-GUI的刚性桩复合地基沉降计算 . 水利水运工程学报,
    [11] 李炜, 黄旭, 赵生校, 周永, 王淡善.  海上风机基础大直径加翼单桩常重力模型试验数值仿真 . 水利水运工程学报,
    [12] 卢陈,刘晓平,林积大,刘霞.  水平荷载下底梁式全直桩码头横向荷载传递规律 . 水利水运工程学报,
    [13] 罗小艳,刘伟平.  基于统一强度理论的管桩挤土效应分析 . 水利水运工程学报,
    [14] 郑志芳,李宗利,孙丽丽.  动力荷载作用下裂缝水力劈裂效应研究 . 水利水运工程学报,
    [15] 鲁绪文,何宁,关秉洪,俞缙.  混凝土芯砂石桩的沉桩挤土效应及超孔隙水压力变化 . 水利水运工程学报,
    [16] 王月香,孙常青,陈茂林.  复合桩基端阻群桩效应及其效应系数的有限元分析 . 水利水运工程学报,
    [17] 范明桥,杨明昌,周传海.  新长铁路混凝土挡墙加筋格栅试验 . 水利水运工程学报,
    [18] 何开胜,宣芝锦.  深厚软土中水泥土桩制桩技术的试验研究 . 水利水运工程学报,
    [19] 黄书秩,唐太平,黄卫生.  集中荷载作用下高桩码头面板的横向配筋 . 水利水运工程学报,
    [20] 章为民,蔡正银,赖忠中.  加筋挡土墙的极限分析方法及离心模型试验验证 . 水利水运工程学报,
  • 加载中
图(6) / 表 (3)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06

/

返回文章
返回