留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑围压效应的块状节理岩体变形破坏数值模拟

詹懿德 汪发祥 佘恬钰 沈佳轶 吕庆

詹懿德,汪发祥,佘恬钰,等. 考虑围压效应的块状节理岩体变形破坏数值模拟[J]. 水利水运工程学报,2022(4):70-76. doi:  10.12170/20211220002
引用本文: 詹懿德,汪发祥,佘恬钰,等. 考虑围压效应的块状节理岩体变形破坏数值模拟[J]. 水利水运工程学报,2022(4):70-76. doi:  10.12170/20211220002
(ZHAN Yide, WANG Faxiang, SHE Tianyu, et al. Numerical simulation on deformation and failure of blocky jointed rock mass considering the effect of confining pressure[J]. Hydro-Science and Engineering, 2022(4): 70-76. (in Chinese)) doi:  10.12170/20211220002
Citation: (ZHAN Yide, WANG Faxiang, SHE Tianyu, et al. Numerical simulation on deformation and failure of blocky jointed rock mass considering the effect of confining pressure[J]. Hydro-Science and Engineering, 2022(4): 70-76. (in Chinese)) doi:  10.12170/20211220002

考虑围压效应的块状节理岩体变形破坏数值模拟

doi: 10.12170/20211220002
基金项目: 国家自然科学基金面上项目(41772287);自然资源部浙江地质灾害野外观测研究站开放基金资助项目(ZJDZGCZ-2021);中央高校基本科研业务费专项资金(2021QNA4037)
详细信息
    作者简介:

    詹懿德(1998—),男,湖北大冶人,硕士研究生,主要从事岩石力学方面的研究。E-mail:21934119@zju.edu.cn

    通讯作者:

    沈佳轶(E-mail:jiayi@zju.edu.cn

  • 中图分类号: TU458

Numerical simulation on deformation and failure of blocky jointed rock mass considering the effect of confining pressure

  • 摘要: 节理岩体变形模量是深部岩体工程设计及稳定性分析的重要设计参数,开展围压对节理岩体变形特征及破坏形态的研究具有重要意义。采用离散元数值模拟与室内试验测试相结合的研究方法,开展不同围压条件下含两组预制节理的块状节理岩体三轴压缩变形破坏数值模拟研究,主要结论如下:(1)块状节理岩体的变形模量随着围压的增大而增大,当围压超过4 MPa时,变形模量的变化趋于平缓;(2)块状节理岩体的破坏模式分为两种:一是产生沿着已有节理面的滑动破坏;二是产生穿过整个岩体的剪切破坏,且随着围压的增大,块状节理岩体的破坏模式由节理滑动破坏向岩块剪切破坏转变;(3)对于1+2、2+3、3+5和5+7块状节理岩体模型,发生破坏模式转变的围压分别为0.5、1.0、4.0和4.0 MPa。
  • 图  1  完整岩石PFC数值模型

    Figure  1.  PFC numerical model of intact rock

    图  2  完整岩石轴向应力应变曲线对比(围压:4 MPa)

    Figure  2.  Comparison of axial stress strain curves of intact rock (confining pressure: 4 MPa)

    图  3  不同围压下完整岩石峰值强度

    Figure  3.  Peak strength of intact rock under different confining pressures

    图  4  块状节理岩体试验试样[7]

    Figure  4.  Blocky jointed rock mass test samples[7]

    图  5  2+3块状节理岩体PFC数值模型

    Figure  5.  PFC numerical model of 2+3 blocky jointed rock mass

    图  6  不同围压条件下2+3块状节理岩体峰值强度

    Figure  6.  Peak strength of 2+3 blocky jointed rock mass under different confining pressures

    图  7  块状节理岩体模型

    Figure  7.  Blocky jointed rock mass models

    图  8  不同围压下块状节理岩体破坏形态

    Figure  8.  Failure modes of blocky jointed rock masses under different confining pressures

    图  9  2+3块状节理岩体的轴向应力应变曲线(围压:2.0 MPa)

    Figure  9.  Triaxial stress-strain curve of 2+3 blocky jointed rock mass (confining pressure: 2.0 MPa)

    图  10  不同围压条件下的块状节理岩体变形模量

    Figure  10.  Deformation modulus of blocky jointed rock mass under different confining pressures

    表  1  PFC完整岩石数值模型细观参数

    Table  1.   Mesoscopic parameters of PFC intact rock numerical model

    最小粒径/mm粒径比摩擦因数孔隙率密度/(g·cm−3)法向刚度/切向刚度弹性模量/GPa法向强度/MPa切向强度/MPa
    0.50 2.00 0.20 0.16 2.30 1.60 27.16 70.70 70.70
    下载: 导出CSV

    表  2  不同围压下块状节理岩体的变形模量

    Table  2.   Deformation modulus of blocky jointed rock mass under different confining pressures

    围压/MPa变形模量/GPa
    1+22+33+55+7
    0.511.086.684.053.92
    1.011.787.415.275.00
    2.012.418.155.935.39
    4.012.989.556.345.90
    6.013.339.976.756.17
    8.013.8310.307.156.47
    10.014.1910.707.776.75
    12.014.3910.898.016.97
    下载: 导出CSV
  • [1] 佘诗刚, 董陇军. 从文献统计分析看中国岩石力学进展[J]. 岩石力学与工程学报,2013,32(3):442-464 doi:  10.3969/j.issn.1000-6915.2013.03.004

    SHE Shigang, DONG Longjun. Statistics and analysis of academic publications for development of rock mechanics in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 442-464. (in Chinese) doi:  10.3969/j.issn.1000-6915.2013.03.004
    [2] 钱亚俊, 武颖利, 裴伟伟, 等. 不同卸荷速率下岩石强度变形特性[J]. 水利水运工程学报,2020(6):48-54 doi:  10.12170/20200428001

    QIAN Yajun, WU Yingli, PEI Weiwei, et al. Rock strength and deformation characteristics under different unloading rates[J]. Hydro-Science and Engineering, 2020(6): 48-54. (in Chinese) doi:  10.12170/20200428001
    [3] 赵阳升. 岩体力学发展的一些回顾与若干未解之百年问题[J]. 岩石力学与工程学报,2021,40(7):1297-1336

    ZHAO Yangsheng. Retrospection on the development of rock mass mechanics and the summary of some unsolved centennial problems[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1297-1336. (in Chinese)
    [4] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283-1305

    XIE Heping. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305. (in Chinese)
    [5] 李庆辉, 李少轩. 超深层砂岩储层岩石力学特性实验研究[J]. 岩石力学与工程学报,2021,40(5):948-957

    LI Qinghui, LI Shaoxuan. Experimental study on mechanical properties of ultra-deep sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 948-957. (in Chinese)
    [6] ARZÚA J, ALEJANO L R, WALTON G. Strength and dilation of jointed granite specimens in servo-controlled triaxial tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 69: 93-104. doi:  10.1016/j.ijrmms.2014.04.001
    [7] ALEJANO L R, ARZÚA J, BOZORGZADEH N, et al. Triaxial strength and deformability of intact and increasingly jointed granite samples[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 95: 87-103. doi:  10.1016/j.ijrmms.2017.03.009
    [8] HUANG F, SHEN J Y, CAI M, et al. An empirical UCS model for anisotropic blocky rock masses[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3119-3131. doi:  10.1007/s00603-019-01771-2
    [9] SHEN J Y, SHU Z, CAI M, et al. A shear strength model for anisotropic blocky rock masses with persistent joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134: 104430. doi:  10.1016/j.ijrmms.2020.104430
    [10] 姚吉康, 王志亮. 华山花岗岩力学特性及能量演化规律研究[J]. 水利水运工程学报,2018(3):78-85

    YAO Jikang, WANG Zhiliang. Study on mechanical property and energy evolution law of Huashan granite[J]. Hydro-Science and Engineering, 2018(3): 78-85. (in Chinese)
    [11] 张田, 李雪峰, 徐月. 围压下岩石破坏过程的离散元模拟[J]. 煤矿开采,2018,23(4):8-14

    ZHANG Tian, LI Xuefeng, XU Yue. Discrete element simulation of rock failure proceed under confining pressure[J]. Coal Mining Technology, 2018, 23(4): 8-14. (in Chinese)
    [12] 张晓悟, 徐金海, 刘智兵, 等. 不同加载路径条件下软弱夹层泥岩力学响应及变形规律[J]. 采矿与岩层控制工程学报,2021,3(4):37-46

    ZHANG Xiaowu, XU Jinhai, LIU Zhibing, et al. Mechanical response and deformation of weak interbedded mudstone under different loading paths[J]. Journal of Mining and Strata Control Engineering, 2021, 3(4): 37-46. (in Chinese)
    [13] 雷东多, 范瑛, 田浩源. 不同围压下硬脆性岩石的强度演化特征研究[J]. 湖北工业大学学报,2021,36(5):104-107 doi:  10.3969/j.issn.1003-4684.2021.05.022

    LEI Dongduo, FAN Ying, TIAN Haoyuan. Study on the strength evolution characteristics of hard and brittle rocks under different confining pressures[J]. Journal of Hubei University of Technology, 2021, 36(5): 104-107. (in Chinese) doi:  10.3969/j.issn.1003-4684.2021.05.022
    [14] 张社荣, 孙博, 王超, 等. 双轴压缩试验下岩石裂纹扩展的离散元分析[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3083-3091.

    ZHANG Sherong, SUN Bo, WANG Chao, et al. Discrete element analysis of crack propagation in rocks under biaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl 2): 3083-3091. (in Chinese)
    [15] 肖桃李, 李新平, 郭运华. 三轴压缩条件下单裂隙岩石的破坏特性研究[J]. 岩土力学,2012,33(11):3251-3256

    XIAO Taoli, LI Xinping, GUO Yunhua. Experimental study of failure characteristic of single jointed rock mass under triaxial compression tests[J]. Rock and Soil Mechanics, 2012, 33(11): 3251-3256. (in Chinese)
    [16] 沈小轲, 朱杰兵, 王小伟, 等. 冻融循环下云母石英片岩三轴力学特性与强度预测模型[J]. 长江科学院院报,2021,38(3):83-89, 96 doi:  10.11988/ckyyb.201914282021

    SHEN Xiaoke, ZHU Jiebing, WANG Xiaowei, et al. Triaxial mechanical properties and strength prediction model of mica quartz schist under freezing-thawing cycles[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(3): 83-89, 96. (in Chinese) doi:  10.11988/ckyyb.201914282021
    [17] 李小梅, 关云飞, 凌华, 等. 考虑级配影响的堆石料强度与变形特性[J]. 水利水运工程学报,2016(4):32-39

    LI Xiaomei, GUAN Yunfei, LING Hua, et al. Experimental studies on strength and deformation behaviors of rockfill materials considering particle gradation[J]. Hydro-Science and Engineering, 2016(4): 32-39. (in Chinese)
    [18] 蒋长宝, 魏财, 庄万军, 等. 等幅循环荷载下页岩的变形特性及能量演化机制研究[J]. 岩石力学与工程学报,2020,39(12):2416-2428

    JIANG Changbao, WEI Cai, ZHUANG Wanjun, et al. Research on deformation characteristics and energy evolution mechanisms of shale under constant amplitude cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2416-2428. (in Chinese)
    [19] 杨圣奇, 田文岭, 董晋鹏. 高温后两种晶粒花岗岩破坏力学特性试验研究[J]. 岩土工程学报,2021,43(2):281-289

    YANG Shengqi, TIAN Wenling, DONG Jinpeng. Experimental study on failure mechanical properties of granite with two grain sizes after thermal treatment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 281-289. (in Chinese)
    [20] 张伯虎, 马浩斌, 田小朋, 等. 层状页岩力学参数的各向异性研究[J]. 地下空间与工程学报, 2020, 16(增刊2): 634-638.

    ZHANG Bohu, MA Haobin, TIAN Xiaopeng, et al. Deep layered shale mechanical parameters anisotropy study[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(Suppl 2): 634-638. (in Chinese)
    [21] 杨圣奇, 温森, 李良权. 不同围压下断续预制裂纹粗晶大理岩变形和强度特性的试验研究[J]. 岩石力学与工程学报,2007,26(8):1572-1587 doi:  10.3321/j.issn:1000-6915.2007.08.007

    YANG Shengqi, WEN Sen, LI Liangquan. Experimental study on deformation and strength properties of coarse marble with discontinuous pre-existing cracks under different confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1572-1587. (in Chinese) doi:  10.3321/j.issn:1000-6915.2007.08.007
    [22] VAZAIOS I, FARAHMAND K, VLACHOPOULOS N, et al. Effects of confinement on rock mass modulus: a synthetic rock mass modelling (SRM) study[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3): 436-456. doi:  10.1016/j.jrmge.2018.01.002
  • [1] 王浩然, 王志亮, 王星辰.  含缺陷岩样三轴压缩变形破坏过程颗粒流模拟 . 水利水运工程学报, 2021, (4): 46-53. doi: 10.12170/20200912001
    [2] 周舟, 曾诚, 周婕, 王玲玲, 丁少伟.  等宽明渠交汇口流速分布特性数值模拟 . 水利水运工程学报, 2020, (1): 32-39. doi: 10.12170/20190501005
    [3] 程井, 李培聪, 李同春, 袁平.  基于MCMC法的混凝土坝坝体坝基变形模量随机反演 . 水利水运工程学报, 2020, (2): 99-106. doi: 10.12170/20181218001
    [4] 祝龙, 周冬卉, 李云, 宣国祥, 王晓刚.  土坝溃决跌坎水流水动力特性数值模拟 . 水利水运工程学报, 2017, (5): 1-8. doi: 10.16198/j.cnki.1009-640X.2017.05.001
    [5] 郦凯, 章卫胜, 王金华.  江苏沿海潮流数值模拟与潮流能估算 . 水利水运工程学报, 2017, (1): 111-117. doi: 10.16198/j.cnki.1009-640X.2017.01.015
    [6] 周志敏, 徐群, 雷蕾.  瓯江口滞流点运动规律数值模拟 . 水利水运工程学报, 2016, (1): 116-121.
    [7] 武昕竹, 柳淑学, 李金宣.  聚焦波浪与直立圆柱作用的数值模拟 . 水利水运工程学报, 2015, (6): 31-39.
    [8] 王敏, 程文, 施练东, 黄晶, 闵亮, 郑建刚.  汤浦水库泥沙冲淤分布数值模拟 . 水利水运工程学报, 2015, (6): 107-111.
    [9] 邓成进, 袁秋霜, 侯延华, 贾巍.  基于FLUENT的库区涌浪数值模拟 . 水利水运工程学报, 2014, (3): 84-91.
    [10] 岳喜兵, 江舜武, 王宝善, 邓永锋.  强夯地基垫层厚度对承载力与变形模量的影响 . 水利水运工程学报, 2014, (6): 84-90.
    [11] 高江林, 陈云翔.  基于渗流与应力耦合的防渗墙与坝体相互作用的数值模拟 . 水利水运工程学报, 2013, (2): 58-63.
    [12] 葛旭峰,王长新,李琳.  陡坡后消力池内水跃的数值模拟 . 水利水运工程学报, 2012, (3): 70-74.
    [13] 陈策.  泰州大桥中塔沉井振动数值模拟 . 水利水运工程学报, 2012, (2): 1-7.
    [14] 陈辉,刘志雄,江耀祖.  引航道通航水流条件数值模拟 . 水利水运工程学报, 2012, (4): 13-18.
    [15] 马理强,常建忠,刘谋斌,刘汉涛.  基于SPH方法的溃坝流动数值模拟 . 水利水运工程学报, 2010, (3): -.
    [16] 刘汉涛,常建忠,安康.  基于SPH的自由表面流动数值模拟 . 水利水运工程学报, 2009, (1): -.
    [17] 莫思平,辛文杰,应强.  广州港深水出海航道伶仃航段回淤规律分析 . 水利水运工程学报, 2008, (1): 42-46.
    [18] 潘存鸿,鲁海燕,曾剑.  钱塘江涌潮特性及其数值模拟 . 水利水运工程学报, 2008, (2): -.
    [19] 何杰,辛文杰.  潮汐河口汊道治理的数值模拟 . 水利水运工程学报, 2008, (1): 61-66.
    [20] 陈为博,杨敏.  用VOF方法数值模拟溢流堰流场 . 水利水运工程学报, 2004, (4): 42-45.
  • 加载中
图(10) / 表 (2)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  30
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 网络出版日期:  2022-06-09
  • 刊出日期:  2022-08-23

/

返回文章
返回