Prototype observation of hydraulic characteristics of filling and emptying system of Guigang Second Line Ship Lock
-
摘要: 贵港二线船闸是西江航运干线中的重要通航枢纽,采用简单的闸墙廊道侧支孔出水及双明沟消能的分散输水系统布置型式。为验证输水系统布置及闸阀门运行方式是否合理,对船闸输水系统进行了水力特性原型观测试验。观测结果表明:闸室水力特性及船舶停泊条件基本满足规范及设计要求,船闸进出水口及闸室内流态较好;在当前船闸水头及推荐的阀门运行方式下,输水末期闸室内的超高、降超出了规范要求,改善闸阀门运行方式后,有效降低了惯性水头;船闸原型与模型间流量系数存在偏差,偏差值不超过6%;双线船闸在不同工作时序下运行,相互影响不大。Abstract: Guigang Second Line Ship Lock is an important navigation hub in the main shipping line of the Xijiang River. It adopts a simple decentralized filling and emptying system with a layout of gate wall gallery side branch outlet and double open ditch energy dissipation, which is rare in China. In order to verify the reasonable layout of the system and the proper operation mode of the gate valve, and to ensure the safe and efficient operation of the ship lock, the prototype observation test of the hydraulic characteristics of the filling and emptying system was carried out. The observation results show that the hydraulic characteristics of the lock chamber and the berthing conditions of the ship can basically meet the code and design requirements, and the flow patterns at the inlet and outlet of the lock and in the lock chamber are good; and under the current ship lock head and recommended gate valve operation mode, the superelevation and drop in the lock chamber at the end of water conveyance exceed the specification requirements. After putting forward improvement measures for the operation mode of the lock valve, the problem has been improved. There is a deviation in the discharge coefficient between the prototype and the model of the ship lock, and the deviation value does not exceed 6%. The operation of the double-track lock under different working sequences has little influence on each other.
-
表 1 输水系统各部位特征尺寸
Table 1. Characteristic dimensions of various parts of filling and emptying system
部位 布 置 方 式 总面积/m2 与阀门段廊道面积之比 上游进水口 进水口采用引航墙垂直多支孔布置,两侧各6个支孔,
支孔最低淹没水深为6.8 m2×6×4.5×6.0=324.00 6.00 充水阀门段主廊道 阀门处廊道顶高程为22.50 m,最小淹没水深6.1 m,
阀门后廊道顶部向上突扩至23.0 m2×4.5×6.0=54.00 1.000 闸墙主廊道 廊道沿两侧闸墙底部各设置支孔24个,支孔间距为8.5 m,
出水段总长占闸室有效长度的70%2×5.0×6.0=60.00 1.210 出水支孔 支孔沿水流方向分3区段布置,各区段设8支孔,支孔尺寸
分别为:1.0 m×1.3 m、0.9 m×1.3 m、0.8 m×1.3 m2×8×(1.0+0.9+0.8) ×
1.3=56.161.135 消能明沟 出水支孔外连续设置两道深2.4 m的消能明沟,
第一道明沟宽3.0 m,第二道宽3.5 m/ / 泄水阀门段主廊道 输水廊道跌落后顶高程为20.3 m,最小淹没水深8.7 m,
泄水廊道在阀门后水平转弯与下闸首出水口消能室相连接2×4.5×6.0=54.00 1.000 下游出水口 出水口采用顶面和正面联合出水,出水口外设消力池 2×(4.5+4.5)×6.0=108.00 2.180 表 2 输水水力特性
Table 2. Hydraulic characteristics of filling and emptying system
序号 输水方式 工作水头/m 阀门运行方式 tv/min T/min Qmax/
(m3·s−1)vumax/
(m·min−1)vuave/
(m·min−1)h/m 1 双边充水 11.51 静水关阀 7 9.67 350 1.97 1.19 0.33 2 双边充水 11.51 动水关阀 7 10.31 350 1.97 1.12 0.10 3 双边泄水 11.51 静水关阀 7 10.33 350 1.97 1.11 0.32 4 双边泄水 11.64 动水关阀 7 9.55 390 2.20 1.22 0.15 5 单边充水 11.63 动水关阀 7 15.39 250 1.41 0.76 0.09 6 单边泄水 11.64 动水关阀 7 16.71 245 1.38 0.70 0.16 注:tv为阀门开启时间;T为输水时间;Qmax为输水最大流量;vumax为闸室水面最大上升(下降)速度;vuave为闸室水面平均上升(下降)速度;h为惯性超高/降。 表 3 阻力系数及流量系数统计
Table 3. Statistics of resistance coefficient and discharge coefficient
输水状态 阀门开启方式 模型试验值 原型观测值 阻力系数 流量系数 阻力系数 流量系数 充水 双边开启 1.422 0.839 1.298 0.846 单边开启 1.327 0.862 1.118 0.906 泄水 双边开启 1.825 0.740 1.719 0.741 单边开启 1.687 0.770 1.466 0.799 表 4 上、下游引航道水位波动
Table 4. Fluctuation of water level in upstream and downstream approach channels
运行方式 一线船闸波幅/m 二线船闸波幅/m 上升 下降 上升 下降 一线船闸单充 0.26 0.25 0.18 0.13 二线船闸单充 0.15 0.30 0.22 0.29 一、二线船闸先后充 0.27 0.29 0.26 0.34 一线船闸单泄 0.32 0.12 0.11 0.05 二线船闸单泄 0.15 0.06 0.25 0.23 一、二线船闸先后泄 0.38 0.22 0.22 0.26 -
[1] 张绪进, 吕伟东, 刘平昌, 等. 贵港航运枢纽二线船闸输水系统水力学试验[J]. 水利水运工程学报,2012(4):34-38 doi: 10.3969/j.issn.1009-640X.2012.04.007 ZHANG Xujin, LÜ Weidong, LIU Pingchang, et al. Hydraulic experiment for the second-line ship-lock’s filling-emptying system of Guigang navigation project[J]. Hydro-Science and Engineering, 2012(4): 34-38. (in Chinese) doi: 10.3969/j.issn.1009-640X.2012.04.007 [2] 徐进超, 宣国祥, 刘本芹, 等. 贵港二线船闸下引航道物理模型试验研究[J]. 水利水运工程学报,2017(6):9-13 XU Jinchao, XUAN Guoxiang, LIU Benqin, et al. Model test study of low approach channel of Guigang second line shiplock[J]. Hydro-Science and Engineering, 2017(6): 9-13. (in Chinese) [3] 彭永勤, 刘平昌. 贵港二线船闸下闸首出口及下游引航道停泊条件研究[J]. 水运工程,2015(10):108-111 doi: 10.3969/j.issn.1002-4972.2015.10.019 PENG Yongqin, LIU Pingchang. Berthing conditions of Guigang second-lane lock’s downstream lock head outlet and approach channel[J]. Port & Waterway Engineering, 2015(10): 108-111. (in Chinese) doi: 10.3969/j.issn.1002-4972.2015.10.019 [4] 王晓刚, 胡亚安, 严秀俊, 等. 贵港二线船闸泄水阀门体型研究[J]. 水运工程,2016(12):51-58 doi: 10.3969/j.issn.1002-4972.2016.12.009 WANG Xiaogang, HU Yaan, YAN Xiujun, et al. Body type of emptying valve at Guigang second-line ship lock[J]. Port & Waterway Engineering, 2016(12): 51-58. (in Chinese) doi: 10.3969/j.issn.1002-4972.2016.12.009 [5] 彭永勤, 张绪进. 贵港二线船闸闸室双明沟内设消力槛试验研究[J]. 中国港湾建设,2017,37(5):32-35 doi: 10.7640/zggwjs201705008 PENG Yongqin, ZHANG Xujin. Experimental study on baffle sill in double open ditch of Guigang second-line ship lock chamber[J]. China Harbour Engineering, 2017, 37(5): 32-35. (in Chinese) doi: 10.7640/zggwjs201705008 [6] 陈亮, 刘平昌, 张绪进, 等. 贵港二线船闸闸室双明沟消能工布置及消能特性研究[J]. 水道港口,2013,34(2):144-149 doi: 10.3969/j.issn.1005-8443.2013.02.014 CHEN Liang, LIU Pingchang, ZHANG Xujin, et al. Layout of double open trench energy dissipater and energy dissipation characteristics of Guigang second line ship lock chamber[J]. Journal of Waterway and Harbor, 2013, 34(2): 144-149. (in Chinese) doi: 10.3969/j.issn.1005-8443.2013.02.014 [7] 彭永勤, 张绪进. 贵港二线船闸闸室消能工优化试验研究[J]. 水运工程,2016(7):91-94 doi: 10.3969/j.issn.1002-4972.2016.07.018 PENG Yongqin, ZHANG Xujin. Experiment research on Guigang second-lane lock chamber energy dissipater[J]. Port & Waterway Engineering, 2016(7): 91-94. (in Chinese) doi: 10.3969/j.issn.1002-4972.2016.07.018 [8] 中华人民共和国交通部. 船闸输水系统设计规范: JTJ 306—2001[S]. 北京: 人民交通出版社, 2002. Ministry of Transport of the People’s Republic of China. Design code for filling and emptying system of shiplocks: JTJ 306—2001[S]. Beijing: People’s Communications Press. (in Chinese) [9] 张黎明. 船闸输水系统流量系数原、模型对比分析[J]. 水运工程,2000(4):31-33 doi: 10.3969/j.issn.1002-4972.2000.04.010 ZHANG Liming. Comparative analysis of prototype & model for factor factor of water filling & emptying system of shiplpck[J]. Port & Waterway Engineering, 2000(4): 31-33. (in Chinese) doi: 10.3969/j.issn.1002-4972.2000.04.010 [10] 须清华. 分散输水系统船闸出水孔段廊道的水工模型缩尺影响[J]. 水利水运科学研究,2000(3):65-68 XU Qinghua. Scale effect of lock culvert manifold in hydraulic model[J]. Journal of Nanjing Hydraulic Research Institute, 2000(3): 65-68. (in Chinese) -