留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

现代混凝土自收缩及其调控研究进展

李景浩 何小波 胡少伟 蒋建华 赵海涛

李景浩,何小波,胡少伟,等. 现代混凝土自收缩及其调控研究进展[J]. 水利水运工程学报. doi:  10.12170/20220111001
引用本文: 李景浩,何小波,胡少伟,等. 现代混凝土自收缩及其调控研究进展[J]. 水利水运工程学报. doi:  10.12170/20220111001
(LI Jinghao, HE Xiaobo, HU Shaowei, et al. Advance on autogenous shrinkage and its regulation of modern concrete[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20220111001
Citation: (LI Jinghao, HE Xiaobo, HU Shaowei, et al. Advance on autogenous shrinkage and its regulation of modern concrete[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20220111001

现代混凝土自收缩及其调控研究进展

doi: 10.12170/20220111001
基金项目: 国家自然科学基金资助项目(52130901,51878245,U1965105)
详细信息
    作者简介:

    李景浩(1994—),男,河南平顶山人,博士研究生,主要从事水工结构工程与材料性能研究。E-mail:1710934891@qq.com

    通讯作者:

    赵海涛(E-mail:zhaoht@hhu.edu.cn

  • 中图分类号: TU528

Advance on autogenous shrinkage and its regulation of modern concrete

  • 摘要: 混凝土是使用最为广泛的建筑材料。现代混凝土为实现高性能而趋于采用低水胶比和高含量胶凝材料,使得混凝土自收缩显著增大,在约束条件下往往形成较大的拉应力,因此现代混凝土结构开裂问题愈发严重,显著降低了混凝土耐久性和缩短服役期,这类问题在水工大体积及薄壁混凝土结构中尤为突出。对近些年国内外就混凝土自收缩及其调控研究进行了文献综述,比较分析了自收缩“零点”与变形测量方法及装置、自收缩预测模型和自收缩调控措施三个方面的最新成果和进展,总结了现有研究存在的不足,并提出了一些关键问题的未来研究方向,为实际工程裂缝控制和自收缩研究提供参考。
  • 图  1  孔隙压力测量装置简图[18]

    Figure  1.  Schematic diagram for capillary pressure measurement device

    图  2  LVDT法自收缩测试装置[10]

    Figure  2.  Autogenous shrinkage measurement device based on LVTD method[10]

    图  3  安明哲自收缩测试装置[25]

    Figure  3.  Autogenous shrinkage measurement device designed and improved by An Mingzhe[25]

    图  4  水泥基材料早龄期自收缩测试装置[29]

    1-试验箱,2-支架,3-试件模具,4-温湿度调节系统,5-位移测试系统,6-外模,8-温湿控制主机,9-箱内环境温湿度传感器,10-试件内部温湿度传感器,11-温湿调节器,12-预埋标靶,13-位移传感器,14-位移采集主机

    Figure  4.  Early-age autogenous shrinkage measurement device of cementitious materials[29]

    图  5  现有自收缩驱动力理论[40]

    Figure  5.  Current existed theories of autogenous shrinkage driven force[40]

    图  6  基于中子成像技术的水泥基材料内部水分传输规律研究

    Figure  6.  Neuron imaging-based water migration regulation study within cement-based materials

    图  7  基于低场核磁共振技术的物质内部水分传输规律研究

    Figure  7.  LF-NMR based water transport regulation study within substances

  • [1] 中华人民共和国国家发展和改革委员会. 水工建筑物抗冲磨防空蚀混凝土技术规范: DL/T 5207—2005[S]. 北京: 中国电力出版社, 2005

    National Development and Reform Commission. Technical specification for abrasion and cavitation resistance of concrete in hydraulic structures: DL/T 5207—2005[S]. Beijing: China Electric Power Press, 2005. (in Chinese)
    [2] LIU K Z, YU R, SHUI Z H, et al. Optimization of autogenous shrinkage and microstructure for Ultra-High Performance Concrete (UHPC) based on appropriate application of porous pumice[J]. Construction and Building Materials, 2019, 214: 369-381. doi:  10.1016/j.conbuildmat.2019.04.089
    [3] KHEIR J, KLAUSEN A, HAMMER T A, et al. Early age autogenous shrinkage cracking risk of an ultra-high performance concrete (UHPC) wall: modelling and experimental results[J]. Engineering Fracture Mechanics, 2021, 257: 108024. doi:  10.1016/j.engfracmech.2021.108024
    [4] 胡钰泉, 胡少伟, 黄逸群. 带裂缝混凝土轴拉力学性能及Kaiser效应试验研究[J]. 水利水运工程学报,2019(3):67-75. (HU Yuquan, HU Shaowei, HUANG Yiqun. Experimental studies on mechanical properties and Kaiser effect of concrete with cracks under axial tensile stress[J]. Hydro-Science and Engineering, 2019(3): 67-75. (in Chinese)
    [5] LIU K Z, YU R, SHUI Z H, et al. Influence of external water introduced by coral sand on autogenous shrinkage and microstructure development of Ultra-High Strength Concrete (UHSC)[J]. Construction and Building Materials, 2020, 252: 119111. doi:  10.1016/j.conbuildmat.2020.119111
    [6] 康春涛, 贡力, 王忠慧, 等. 利用灰色残差GM(1, 1)-Markov模型预测水工混凝土的劣化[J]. 水利水运工程学报,2021(1):95-103. (KANG Chuntao, GONG Li, WANG Zhonghui, et al. Prediction of hydraulic concrete degradation based on gray residual GM(1, 1)-Markov model[J]. Hydro-Science and Engineering, 2021(1): 95-103. (in Chinese) doi:  10.12170/20200228002
    [7] 杜玉会, 李双喜. 低活性矿渣内养护水泥砂浆自收缩与孔结构分析[J/OL]. 水利水运工程学报. https://kns.cnki.net/kcms/detail/32.1613.TV.20211014.1357.004.html

    DU Yuhui, LI Shuangxi. Analysis of autogenous shrinkage and pore structure of cement mortar with low active slag as internal curing material[J]. Hydro-Science and Engineering. https://kns.cnki.net/kcms/detail/32.1613.TV.20211014.1357.004.html. (in Chinese)
    [8] MARUYAMA I, LURA P. Properties of early-age concrete relevant to cracking in massive concrete[J]. Cement and Concrete Research, 2019, 123: 105770. doi:  10.1016/j.cemconres.2019.05.015
    [9] HU Z L, SHI C J, CAO Z, et al. A review on testing methods for autogenous shrinkage measurement of cement-based materials[J]. Journal of Sustainable Cement-Based Materials, 2013, 2(2): 161-171. doi:  10.1080/21650373.2013.797937
    [10] 侯东伟. 混凝土自身与干燥收缩一体化及相关问题研究[D]. 北京: 清华大学, 2010

    HOU Dongwei. Integrative studies on autogenous and drying shrinkage of concrete and related issues[D]. Beijing: Tsinghua University, 2010. (in Chinese)
    [11] DARQUENNES A, STAQUET S, DELPLANCKE-OGLETREE M P, et al. Effect of autogenous deformation on the cracking risk of slag cement concretes[J]. Cement and Concrete Composites, 2011, 33(3): 368-379. doi:  10.1016/j.cemconcomp.2010.12.003
    [12] BENTUR A. Early-age shrinkage and cracking in cementitious system[J]. Concrete Science and Engineering (France), 2001, 3(9): 3-12.
    [13] ZHAO H T, LI J H, LIU H, et al. Effects of shale and CaO incorporation on mechanical properties and autogenous deformation of early-age concrete[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2021, 36(5): 653-663. doi:  10.1007/s11595-021-2457-z
    [14] ASTM Committee on Standard. Standard test method for autogenous strain of cement paste and mortar: ASTM C1698-09[S]. West Conshohocken, Pennsylvania, USA: ASTM International, 2009.
    [15] HUANG H, YE G. Examining the “time-zero” of autogenous shrinkage in high/ultra-high performance cement pastes[J]. Cement and Concrete Research, 2017, 97: 107-114. doi:  10.1016/j.cemconres.2017.03.010
    [16] ZHANG J, HOU D W, SUN W. Experimental study on the relationship between shrinkage and interior humidity of concrete at early age[J]. Magazine of Concrete Research, 2010, 62(3): 191-199. doi:  10.1680/macr.2010.62.3.191
    [17] CUSSON D. Effect of blended cements on efficiency of internal curing of HPC, ACI SP-256[C]∥Proceedings of Internal curing of high-performance concrete: laboratory and field experiences. Michigan: Farmington Hills, 2008: 105-120.
    [18] MIAO C W, TIAN Q, SUN W, et al. Water consumption of the early-age paste and the determination of “time-zero” of self-desiccation shrinkage[J]. Cement and Concrete Research, 2007, 37(11): 1496-1501. doi:  10.1016/j.cemconres.2007.08.005
    [19] MA Y, YANG X, HU J, et al. Accurate determination of the “time-zero” of autogenous shrinkage in alkali-activated fly ash/slag system[J]. Composites Part B:Engineering, 2019, 177: 107367. doi:  10.1016/j.compositesb.2019.107367
    [20] 张纪阳, 关博文, 马慧, 等. 用电阻率法研究氯氧镁水泥凝结时间[J]. 混凝土,2016(11):21-23,27. (ZHANG Jiyang, GUAN Bowen, MA Hui, et al. Study on setting time of magnesium oxychloride cement using electrical resistivity method[J]. Concrete, 2016(11): 21-23,27. (in Chinese) doi:  10.3969/j.issn.1002-3550.2016.11.006
    [21] 田倩. 低水胶比大掺量矿物掺合料水泥基材料的收缩及机理研究[D]. 南京: 东南大学, 2006

    TIAN Qian. Shrinkage and the mechanism of the cement-based material at low water to binder ratio incorporating high volume mineral admixtures[D]. Nanjing: Southeast University, 2006. (in Chinese)
    [22] 涂妮, 张浩. 混凝土收缩试验研究方法进展[J]. 低温建筑技术,2016,38(1):5-7. (TU Ni, ZHANG Hao. Research progress in methods of concrete shrinkage test[J]. Low Temperature Architecture Technology, 2016, 38(1): 5-7. (in Chinese)
    [23] LIU Z C, HANSEN W. Aggregate and slag cement effects on autogenous shrinkage in cementitious materials[J]. Construction and Building Materials, 2016, 121: 429-436. doi:  10.1016/j.conbuildmat.2016.06.012
    [24] TAZAWA E I, MIYAZAWA S. Experimental study on mechanism of autogenous shrinkage of concrete[J]. Cement and Concrete Research, 1995, 25(8): 1633-1638. doi:  10.1016/0008-8846(95)00159-X
    [25] 安明哲, 覃维祖, 朱金铨. 高强混凝土的自收缩试验研究[J]. 山东建材学院学报,1998,12(增刊1):139-143. (AN Mingzhe, TAN Weizu, ZHU Jinquan. Experimental study on autogenous shrinkage of high-strength concrete[J]. Journal of Shandong Institute of Building Materials, 1998, 12(Suppl1): 139-143. (in Chinese)
    [26] BENDIMERAD A Z, ROZIÈRE E, LOUKILI A. Plastic shrinkage and cracking risk of recycled aggregates concrete[J]. Construction and Building Materials, 2016, 121: 733-745. doi:  10.1016/j.conbuildmat.2016.06.056
    [27] JIANG C H, YANG Y, WANG Y, et al. Autogenous shrinkage of high performance concrete containing mineral admixtures under different curing temperatures[J]. Construction and Building Materials, 2014, 61: 260-269. doi:  10.1016/j.conbuildmat.2014.03.023
    [28] SHEN D J, WANG X D, CHENG D B, et al. Effect of internal curing with super absorbent polymers on autogenous shrinkage of concrete at early age[J]. Construction and Building Materials, 2016, 106: 512-522. doi:  10.1016/j.conbuildmat.2015.12.115
    [29] 赵海涛, 吴胜兴, 陈育志, 等. 水泥基材料早龄期自收缩测量装置: CN203720173U[P]. 2014-07-16

    ZHAO Haitao, WU Shengxing, CHEN Yuzhi, et al. Measurement device for early-age autogenous shrinkage of cementitious materials: CN203720173U[P]. 2014-07-16. (in Chinese)
    [30] BETON F I D. Structural Concrete-Textbook on Behavior[J]. Design & Performance, 1999: 1.
    [31] 蒋正武, 孙振平, 王培铭. 水泥浆体中自身相对湿度变化与自收缩的研究[J]. 建筑材料学报,2003,6(4):345-349. (JIANG Zhengwu, SUN Zhenping, WANG Peiming. Study on autogenous relative humidity change and autogenous shrinkage of cement pastes[J]. Journal of Building Materials, 2003, 6(4): 345-349. (in Chinese) doi:  10.3969/j.issn.1007-9629.2003.04.002
    [32] TAZAWA E I, MIYAZAWA S. Influence of cement and admixture on autogenous shrinkage of cement paste[J]. Cement and Concrete Research, 1995, 25(2): 281-287. doi:  10.1016/0008-8846(95)00010-0
    [33] 楼瑛, 罗素蓉. 混凝土自收缩的测定及若干因素对自收缩影响规律的研究[J]. 福州大学学报(自然科学版),2015,43(1):100-105. (LOU Ying, LUO Surong. The study of how to measure autogenous shrinkage of concrete and a number of factors that influence it[J]. Journal of Fuzhou University (Natural Science Edition), 2015, 43(1): 100-105. (in Chinese)
    [34] YOO S W, KWON S J, JUNG S H. Analysis technique for autogenous shrinkage in high performance concrete with mineral and chemical admixtures[J]. Construction and Building Materials, 2012, 34: 1-10. doi:  10.1016/j.conbuildmat.2012.02.005
    [35] LURA P, JENSEN O M, BREUGEL K V. Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms[J]. Cement and Concrete Research, 2003, 33(2): 223-232. doi:  10.1016/S0008-8846(02)00890-6
    [36] HUA C, ACKER P, EHRLACHER A. Analyses and models of the autogenous shrinkage of hardening cement paste: I. Modelling at macroscopic scale[J]. Cement and Concrete Research, 1995, 25(7): 1457-1468. doi:  10.1016/0008-8846(95)00140-8
    [37] BENTZ D P, GARBOCZI E J, QUENARD D A. Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass[J]. Modelling and Simulation in Materials Science and Engineering, 1998, 6(3): 211-236. doi:  10.1088/0965-0393/6/3/002
    [38] ZHANG J, HOU D W, HAN Y D. Micromechanical modeling on autogenous and drying shrinkages of concrete[J]. Construction and Building Materials, 2012, 29: 230-240. doi:  10.1016/j.conbuildmat.2011.09.022
    [39] KOENDERS E A B, BREUGEL K V. Numerical modelling of autogenous shrinkage of hardening cement paste[J]. Cement and Concrete Research, 1997, 27(10): 1489-1499. doi:  10.1016/S0008-8846(97)00170-1
    [40] FAIRBAIRN E M R, AZENHA M. Thermal cracking of massive concrete structures[M]. Switzerland: Springer Nature, 2019.
    [41] XI Y P, JENNINGS H M. Shrinkage of cement paste and concrete modelled by a multiscale effective homogeneous theory[J]. Materials and Structures, 1997, 30(6): 329-339. doi:  10.1007/BF02480683
    [42] PICHLER C, LACKNER R, MANG H A. A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials[J]. Engineering Fracture Mechanics, 2007, 74(1/2): 34-58.
    [43] LIU S, LIU X, YUAN Y, et al. A stochastic multi-scale model for prediction of the autogenous shrinkage deformations of early-age concrete[J]. Computers, Materials & Continua, 2014, 39(2): 85-112.
    [44] LIU L, WANG X C, CHEN H S, et al. Numerical modeling of drying shrinkage deformation of cement-based composites by coupling multiscale structure model with 3D lattice analyses[J]. Computers & Structures, 2017, 178: 88-104.
    [45] ZHAO H T, LIU J P, YIN X L, et al. A multiscale prediction model and simulation for autogenous shrinkage deformation of early-age cementitious materials[J]. Construction and Building Materials, 2019, 215: 482-493. doi:  10.1016/j.conbuildmat.2019.04.225
    [46] EGUCHI K, TERANISHI K. Prediction equation of drying shrinkage of concrete based on composite model[J]. Cement and Concrete Research, 2005, 35(3): 483-493. doi:  10.1016/j.cemconres.2004.08.002
    [47] LIM J L G, RAMAN S N, SAFIUDDIN M, et al. Autogenous shrinkage, microstructure, and strength of ultra-high performance concrete incorporating carbon nanofibers[J]. Materials, 2019, 12(2): 320. doi:  10.3390/ma12020320
    [48] RONGBING B, JIAN S. Synthesis and evaluation of shrinkage-reducing admixture for cementitious materials[J]. Cement and Concrete Research, 2005, 35(3): 445-448. doi:  10.1016/j.cemconres.2004.07.009
    [49] 孔爱散, 周长顺. 减缩剂在水泥基材料中的应用研究进展(II)——体积稳定性[J]. 混凝土,2020(6):79-84,89. (KONG Aisan, ZHOU Changshun. Research progress of application of shrinkage-reducing admixture in cement-based materials(II)—Volume stability[J]. Concrete, 2020(6): 79-84,89. (in Chinese) doi:  10.3969/j.issn.1002-3550.2020.06.018
    [50] 殷新龙, 赵海涛, 仇宁, 等. 补偿收缩混凝土研究进展[J]. 三峡大学学报(自然科学版),2016,38(4):60-65. (YIN Xinlong, ZHAO Haitao, QIU Ning, et al. Research progress of shrinkage-compensating concrete[J]. Journal of China Three Gorges University (Natural Sciences), 2016, 38(4): 60-65. (in Chinese)
    [51] LIU Z, CUI X H, TANG M S. MgO-type delayed expansive cement[J]. Cement and Concrete Research, 1991, 21(6): 1049-1057. doi:  10.1016/0008-8846(91)90065-P
    [52] HIGUCHI T, EGUCHI M, MORIOKA M, et al. Hydration and properties of expansive additive treated high temperature carbonation[J]. Cement and Concrete Research, 2014, 64: 11-16. doi:  10.1016/j.cemconres.2014.06.001
    [53] ZHANG S Z, TIAN Q, LU A Q. Influence of CaO-based expansive agent on the deformation behavior of high performance concrete[J]. Applied Mechanics and Materials, 2013, 438-439: 113-116. doi:  10.4028/www.scientific.net/AMM.438-439.113
    [54] 姜正平, 韩静云, 张秀志. 不同养护条件下膨胀剂对水泥砂浆收缩性影响的研究[J]. 混凝土与水泥制品,2003(3):12-14. (JIANG Zhengping, HAN Jingyun, ZHANG Xiuzhi. Study of influence of expansive agent on mortar shrinkage under different condition of curing[J]. China Concrete and Cement Products, 2003(3): 12-14. (in Chinese) doi:  10.3969/j.issn.1000-4637.2003.03.004
    [55] 阎培渝, 陈广智. 养护温度和胶凝材料组成对膨胀剂限制膨胀率的影响[J]. 建筑技术,2001,32(1):22-23. (YAN Peiyu, CHEN Guangzhi. Impact of curing temperature and gelling material composition to restricted expansion rate of expansion agent[J]. Architecture Technology, 2001, 32(1): 22-23. (in Chinese) doi:  10.3969/j.issn.1000-4726.2001.01.006
    [56] POURJAVADI A, FAKOORPOOR S M, KHALOO A, et al. Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles[J]. Materials & Design, 2012, 42: 94-101.
    [57] JUSTS J, WYRZYKOWSKI M, BAJARE D, et al. Internal curing by superabsorbent polymers in ultra-high performance concrete[J]. Cement and Concrete Research, 2015, 76: 82-90. doi:  10.1016/j.cemconres.2015.05.005
    [58] CASTRO J, KEISER L, GOLIAS M, et al. Absorption and desorption properties of fine lightweight aggregate for application to internally cured concrete mixtures[J]. Cement and Concrete Composites, 2011, 33(10): 1001-1008. doi:  10.1016/j.cemconcomp.2011.07.006
    [59] SHEN P L, LU L N, WANG F Z, et al. Water desorption characteristics of saturated lightweight fine aggregate in ultra-high performance concrete[J]. Cement and Concrete Composites, 2020, 106: 103456. doi:  10.1016/j.cemconcomp.2019.103456
    [60] PAUL A, MURGADAS S, DELPIANO J, et al. The role of moisture transport mechanisms on the performance of lightweight aggregates in internal curing[J]. Construction and Building Materials, 2021, 268: 121191. doi:  10.1016/j.conbuildmat.2020.121191
    [61] ZHANG P, WITTMANN F H, LURA P, et al. Application of neutron imaging to investigate fundamental aspects of durability of cement-based materials: a review[J]. Cement and Concrete Research, 2018, 108: 152-166. doi:  10.1016/j.cemconres.2018.03.003
    [62] ZHOU C S, REN F Z, ZENG Q, et al. Pore-size resolved water vapor adsorption kinetics of white cement mortars as viewed from proton NMR relaxation[J]. Cement and Concrete Research, 2018, 105: 31-43. doi:  10.1016/j.cemconres.2017.12.002
    [63] 张鹏. 基于中子成像的水泥基材料毛细吸水特性研究[D]. 青岛: 青岛理工大学, 2010

    ZHANG Peng. Water capillary suction characteristics of cement-based materials based on neutron radiography method[D]. Qingdao: Qingdao University of technology, 2010. (in Chinese)
    [64] TRTIK P, MÜNCH B, WEISS W J, et al. Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 651(1): 244-249.
    [65] TRTIK P. MUENCH B, WEISS W J, et al. Neutron tomography measurements of water release from superabsorbent polymers in cement paste[C]∥Proceedings of International Conference on Material Science (Volume III). Germany: RILEM Publications, 2010: 175-185.
    [66] MCDONALD P J, KORB J P, MITCHELL J, et al. Surface relaxation and chemical exchange in hydrating cement pastes: a two-dimensional NMR relaxation study[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(1): 011409. doi:  10.1103/PhysRevE.72.011409
    [67] ZHAO H T, LI X L, CHEN X D, et al. Microstructure evolution of cement mortar containing MgO-CaO blended expansive agent and temperature rising inhibitor under multiple curing temperatures[J]. Construction and Building Materials, 2021, 278: 122376. doi:  10.1016/j.conbuildmat.2021.122376
    [68] CHIDIAC S E, MIHALJEVIC S N, KRACHKOVSKIY S A, et al. Efficiency measure of SAP as internal curing for cement using NMR & MRI[J]. Construction and Building Materials, 2021, 278: 122365. doi:  10.1016/j.conbuildmat.2021.122365
    [69] GU M X, XIE R H, JIN G W. A new quantitative evaluation method for fluid constituents with NMR T1-T2 spectra in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104412. doi:  10.1016/j.jngse.2022.104412
    [70] SONG Y, HUANG F, LI X, et al. Water status evolution of pork blocks at different cooking procedures: a two-dimensional LF-NMR T1-T2 relaxation study[J]. Food Research International, 2021, 148: 110614. doi:  10.1016/j.foodres.2021.110614
    [71] ZHAO H T, LIU H, WAN Y, et al. Mechanical properties and autogenous deformation behavior of early-age concrete containing pre-wetted ceramsite and CaO-based expansive agent[J]. Construction and Building Materials, 2021, 267: 120992. doi:  10.1016/j.conbuildmat.2020.120992
    [72] ZHANG Z B, XU L L, TANG M S. Synergistic effect of MgO-based expansive agent and shrinkage reducing admixture on compensating the shrinkage of cementitious materials[J]. Advanced Materials Research, 2010, 163-167: 2350-2355. doi:  10.4028/www.scientific.net/AMR.163-167.2350
    [73] 秦鸿根, 高美蓉, 庞超明, 等. SAP内养护剂改善膨胀混凝土性能及其机理研究[J]. 建筑材料学报,2011,14(3):394-399. (QIN Honggen, GAO Meirong, PANG Chaoming, et al. Research on performance improvement of expansive concrete with internal curing agent SAP and its action mechanism[J]. Journal of Building Materials, 2011, 14(3): 394-399. (in Chinese) doi:  10.3969/j.issn.1007-9629.2011.03.021
    [74] JOSÉ OLIVEIRA M, RIBEIRO A B, BRANCO F G. Combined effect of expansive and shrinkage reducing admixtures to control autogenous shrinkage in self-compacting concrete[J]. Construction and Building Materials, 2014, 52: 267-275. doi:  10.1016/j.conbuildmat.2013.11.033
  • [1] 王继敏, 白银, 丁建彤, 毛学工, 蔡跃波.  混凝土碱-骨料反应长期膨胀变形预测模型研究进展 . 水利水运工程学报, doi: 10.12170/20210805001
    [2] 杜玉会, 李双喜.  低活性矿渣内养护水泥砂浆自收缩与孔结构分析 . 水利水运工程学报, doi: 10.12170/20210628001
    [3] 康春涛, 贡力, 王忠慧, 杨轶群, 王鸿.  利用灰色残差GM(1,1)-Markov模型预测水工混凝土的劣化 . 水利水运工程学报, doi: 10.12170/20200228002
    [4] 邱莉婷, 沈振中, 马福恒, 聂柏松.  MLR-Legendre多项式模型在混凝土坝裂缝开度预测中的应用 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2019.02.016
    [5] 陈述, 李雨晨, 许慧, 尚倩倩, 陈梓偲.  长江下游河段桥墩压缩冲刷预测研究 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2019.03.003
    [6] 陈红, 嵇阳, 唐立模, 吴严君.  基于PID参数自整定的河工模型尾门控制 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.01.005
    [7] 周俊敏, 吴禹, 薛瑞.  高掺量钢纤维自密实混凝土梁抗弯性能分析 . 水利水运工程学报,
    [8] 练迪, 黄耀英, 张倩, 徐佰林, 景继.  岩基上混凝土浇筑块施工期最高温度均匀化调控 . 水利水运工程学报,
    [9] 刘伟宝, 陆采荣, 王珩, 梅国兴, 戈雪良, 杨虎.  回填微膨胀自密实混凝土配制及单轴膨胀试验 . 水利水运工程学报,
    [10] 李达, 牟在根.  简支组合梁长期变形下混凝土收缩模式研究 . 水利水运工程学报,
    [11] 王伟, 钟启明, 刘守华, 李益兵.  混凝土坝变形组合预报模型的蛙跳建模方法 . 水利水运工程学报,
    [12] 邓文杰,王俊杰,张慧萍.  土体Ⅱ型断裂韧度测试方法研究 . 水利水运工程学报,
    [13] 唐云清,柯敏勇,刘海祥,陈松.  循环荷载作用下高强混凝土收缩徐变试验研究 . 水利水运工程学报,
    [14] 陈灿明,黄卫兰,王宏,唐崇钊,丁建彤.  大跨径桥梁高强混凝土收缩徐变特性研究 . 水利水运工程学报,
    [15] 魏迎奇,陈永辉.  基础沉降变形的灰色预测方法 . 水利水运工程学报,
    [16] 周飞,姚松昌.  CT101型补偿收缩剂在天生港挡浪墙工程中的应用 . 水利水运工程学报,
    [17] 李云,张瑞凯.  高水头船闸反弧门后水流流态和收缩系数研究 . 水利水运工程学报,
    [18] 陈元芳.  非负自回归模型的提出及估计回归系数的新方法 . 水利水运工程学报,
    [19] 时启燧,郭军,郭志杰.  陡坡收缩射流掺气特性的试验研究 . 水利水运工程学报,
    [20] 张秉友.  预应力混凝土迭合梁收缩徐变微差应力 . 水利水运工程学报,
  • 加载中
图(7)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  20
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11

/

返回文章
返回