留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含裂隙大理岩压缩破坏和能量特征颗粒流模拟

封陈晨 王志亮 王浩然 王昊辰

封陈晨,王志亮,王浩然,等. 含裂隙大理岩压缩破坏和能量特征颗粒流模拟[J]. 水利水运工程学报. doi:  10.12170/20220112001
引用本文: 封陈晨,王志亮,王浩然,等. 含裂隙大理岩压缩破坏和能量特征颗粒流模拟[J]. 水利水运工程学报. doi:  10.12170/20220112001
(FENG Chenchen, WANG Zhiliang, WANG Haoran, et al. Particle flow simulation on compression failure and energy characteristics for marble containing pre-existing fissure[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20220112001
Citation: (FENG Chenchen, WANG Zhiliang, WANG Haoran, et al. Particle flow simulation on compression failure and energy characteristics for marble containing pre-existing fissure[J]. Hydro-Science and Engineering(in Chinese)) doi:  10.12170/20220112001

含裂隙大理岩压缩破坏和能量特征颗粒流模拟

doi: 10.12170/20220112001
基金项目: 国家自然科学基金雅砻江联合基金资助项目(U1965101);国家自然科学基金资助项目(51579062,41807266)
详细信息
    作者简介:

    封陈晨(1997—),女,安徽肥东人,硕士研究生,主要从事岩石动力学研究。E-mail:fengcc_1014@163.com

  • 中图分类号: TU45

Particle flow simulation on compression failure and energy characteristics for marble containing pre-existing fissure

  • 摘要: 为了研究不同裂隙组合下岩石变形破坏机理和能量演化规律,对锦屏大理岩开展了X射线衍射(XRD)和单轴压缩试验,基于XRD结果和颗粒流程序生成三维等效晶质模型,结合完整岩样的单轴压缩试验结果进行细观参数标定,并建立不同裂隙组合的数值模型,对岩样变形破坏和能量演化进行模拟分析。结果表明:(1)试样强度随预制裂隙倾角的增加先增后减,随裂隙长度和轴向偏移量的增加而降低,随裂隙径向偏移量的增加先减后增;(2)裂隙倾角和空间位置的影响程度均与裂隙长度有关,裂隙长度较大时,倾角会抑制轴向偏移的劣化作用甚至改变径向偏移的影响模式,裂隙倾角对试样强度的硬化效应在裂隙长度较大时愈加明显;(3)预制裂隙倾角、长度及其空间位置均可能会改变试样的破坏模式。研究结果对分析裂隙空间分布对岩石变形破坏的影响具有一定的参考价值。
  • 图  1  锦屏大理岩加工试样和最终数值模型

    Figure  1.  Samples of Jinping marble and final numerical modelling

    图  2  模拟结果与试验结果对比

    Figure  2.  Comparison between numerical and experimental results

    图  3  数值试样裂隙几何参数(单位:mm)

    Figure  3.  Geometric parameters of fissure in the numerical sample (unit:mm)

    图  4  完整试样和不同缺陷层次试样的应力-应变曲线

    Figure  4.  Stress-strain curves of intact sample and fabricated samples with different defect levels

    图  5  不偏移条件下裂隙长度、倾角对试样强度的影响

    Figure  5.  Effects of fissure length and dip on strength of sample without offset

    图  6  轴向偏移对试样强度的影响

    Figure  6.  Effect of fissure axial-offset on strength of sample

    图  7  径向偏移对试样强度的影响

    Figure  7.  Effect of fissure radial-offset on strength of sample

    图  8  不同轴向和径向偏移量下试样最终破坏形态对比

    Figure  8.  Comparison of final fracture morphology of samples under different axial and radial offsets of fissure

    图  9  不同裂隙倾角和长度下试样最终破坏形态对比

    Figure  9.  Comparison of final fracture morphology of samples under different fissure dips and lengthes

    图  10  裂隙轴向偏移量因素

    Figure  10.  Influence factor of fissure axial-offset

    图  11  裂隙长度影响因素

    Figure  11.  Influence factor of fissure length

    表  1  锦屏大理岩的细观参数标定结果

    Table  1.   Calibration results of micro-parameters of Jinping marble

    矿物
    成分
    晶体基本参数晶间细观参数(平行黏结)
    最小半径/
    mm
    最大半径/
    mm
    密度/
    (kg·m−3)
    刚度比接触模量/
    GPa
    接触模量/
    GPa
    刚度比法向强度/
    MPa
    切向强度/
    MPa
    内摩
    擦角/°
    摩擦
    系数
    石英 1.24 1.30 2 800 1.5 13.5 23.0 2.1 72.0 38.5 35.0 0.67
    方解石 0.83 0.90 2 800 1.8 15.2
    白云石 0.90 1.24 2 800 1.8 15.8
    其他 0.80 0.83 2 800 1.5 14.2
    下载: 导出CSV
  • [1] 李元海, 刘金杉, 唐晓杰, 等. 考虑裂隙的含孔洞软岩体力学特性模拟分析[J]. 采矿与安全工程学报,2020,37(3):594-603. (LI Yuanhai, LIU Jinshan, TANG Xiaojie, et al. Simulation analysis of mechanical properties of the soft rock mass with holes and fractures[J]. Journal of Mining & Safety Engineering, 2020, 37(3): 594-603. (in Chinese)

    LI Yuanhai, LIU Jinshan, TANG Xiaojie, et al. Simulation analysis of mechanical properties of the soft rock mass with holes and fractures[J]. Journal of Mining & Safety Engineering, 2020, 37(3): 594-603. (in Chinese))
    [2] LI Y P, CHEN L Z, WANG Y H. Experimental research on pre-cracked marble under compression[J]. International Journal of Solids and Structures, 2005, 42(9/10): 2505-2516.
    [3] ZHANG J Z, ZHOU X P, ZHU J Y, et al. Quasi-static fracturing in double-flawed specimens under uniaxial loading: the role of strain rate[J]. International Journal of Fracture, 2018, 211(1/2): 75-102.
    [4] 赵国彦, 李振阳, 吴浩, 等. 含非贯通裂隙砂岩的动力破坏特性研究[J]. 岩土力学,2019,40(增刊1):73-81. (ZHAO Guoyan, LI Zhenyang, WU Hao, et al. Dynamic failure characteristics of sandstone with non-penetrating cracks[J]. Rock and Soil Mechanics, 2019, 40(Suppl1): 73-81. (in Chinese)

    ZHAO Guoyan, LI Zhenyang, WU Hao, et al. Dynamic failure characteristics of sandstone with non-penetrating cracks[J]. Rock and Soil Mechanics, 2019, 40(Suppl1): 73-81. (in Chinese))
    [5] AFOLAGBOYE L O, HE J M, WANG S J. Experimental study on cracking behaviour of moulded gypsum containing two non-parallel overlapping flaws under uniaxial compression[J]. Acta Mechanica Sinica, 2017, 33(2): 394-405. doi:  10.1007/s10409-016-0624-9
    [6] 刘新荣, 尹志明, 王艳磊. 含V型相交裂隙岩体的力学特性及破坏模式试验[J]. 煤炭学报,2020,45(2):651-659. (LIU Xinrong, YIN Zhiming, WANG Yanlei. Mechanical properties and failure mode of rock mass containing V-type intersecting fissures[J]. Journal of China Coal Society, 2020, 45(2): 651-659. (in Chinese)

    LIU Xinrong, YIN Zhiming, WANG Yanlei. Mechanical properties and failure mode of rock mass containing V-type intersecting fissures[J]. Journal of China Coal Society, 2020, 45(2): 651-659. (in Chinese))
    [7] 王星辰, 王志亮, 黄佑鹏, 等. 预制裂隙岩样宏细观力学行为颗粒流数值模拟[J]. 水文地质工程地质,2021,48(4):86-92. (WANG Xingchen, WANG Zhiliang, HUANG Youpeng, et al. Particle flow simulation of macro-and meso-mechanical behavior of the prefabricated fractured rock sample[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 86-92. (in Chinese)

    WANG Xingchen, WANG Zhiliang, HUANG Youpeng, et al. Particle flow simulation of macro-and meso-mechanical behavior of the prefabricated fractured rock sample[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 86-92. (in Chinese))
    [8] 王浩然, 王志亮, 王星辰. 含缺陷岩样三轴压缩变形破坏过程颗粒流模拟[J]. 水利水运工程学报,2021(4):46-53. (WANG Haoran, WANG Zhiliang, WANG Xingchen. Particle flow simulation of deformation and failure process of defective rock samples under triaxial compression[J]. Hydro-Science and Engineering, 2021(4): 46-53. (in Chinese) doi:  10.12170/20200912001

    WANG Haoran, WANG Zhiliang, WANG Xingchen. Particle flow simulation of deformation and failure process of defective rock samples under triaxial compression[J]. Hydro-Science and Engineering, 2021(4): 46-53. (in Chinese)) doi:  10.12170/20200912001
    [9] 李学华, 牛志军, 姚强岭, 等. 孔洞式三叉裂隙砂岩裂纹扩展特征颗粒流分析[J]. 煤炭学报,2020,45(11):3735-3747. (LI Xuehua, NIU Zhijun, YAO Qiangling, et al. Particle flow analysis of crack propagation characteristics of hole-type trident cracks sandstone[J]. Journal of China Coal Society, 2020, 45(11): 3735-3747. (in Chinese)

    LI Xuehua, NIU Zhijun, YAO Qiangling, et al. Particle flow analysis of crack propagation characteristics of hole-type trident cracks sandstone[J]. Journal of China Coal Society, 2020, 45(11): 3735-3747. (in Chinese))
    [10] HAERI H, SHAHRIAR K, MARJI M F, et al. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 20-28. doi:  10.1016/j.ijrmms.2014.01.008
    [11] HAERI H, SHAHRIAR K, MARJI M F, et al. On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression[J]. Strength of Materials, 2014, 46(1): 140-152. doi:  10.1007/s11223-014-9525-y
    [12] LINDAWATI L, MURSAL M, AFDHAL A. Determination of mineral contents in meukek marble using XRD and SEM-EDS analysis[J]. IOP Conference Series Materials Science and Engineering, 2019, 506: 012023. doi:  10.1088/1757-899X/506/1/012023
    [13] 李建欣. XRD全谱拟合精修对贵州煤中矿物质的定量研究[D]. 焦作: 河南理工大学, 2009

    LI Jianxin. X-Ray diffraction rietveld refinement method quantitative phase analysis minerals in coals Guizhou Province[D]. Jiaozuo: Henan Polytechnic University, 2009. (in Chinese)
    [14] 郭常霖. 多晶材料X射线衍射无标样定量方法[J]. 无机材料学报,1996(1):1-8. (GUO Changlin. X-ray standardless quantitative analysis method for polycrystalline materials[J]. Journal of Inorganic Materials, 1996(1): 1-8. (in Chinese) doi:  10.3321/j.issn:1000-324X.1996.01.001

    GUO Changlin. X-ray standardless quantitative analysis method for polycrystalline materials[J]. Journal of Inorganic Materials, 1996(1): 1-8. (in Chinese)) doi:  10.3321/j.issn:1000-324X.1996.01.001
    [15] 胡训健, 卞康, 刘建, 等. 花岗岩晶体粒径分布对声发射特性影响的颗粒流模拟[J]. 煤炭学报,2021,46(增刊2):721-730. (HU Xunjian, BIAN Kang, LIU Jian, et al. Particle flow simulation of the influence of granite crystal size distribution on acoustic emission characteristics[J]. Journal of China Coal Society, 2021, 46(Suppl2): 721-730. (in Chinese)

    HU Xunjian, BIAN Kang, LIU Jian, et al. Particle flow simulation of the influence of granite crystal size distribution on acoustic emission characteristics[J]. Journal of China Coal Society, 2021, 46(Suppl2): 721-730. (in Chinese))
    [16] 胡训健, 卞康, 刘建, 等. 细观结构的非均质性对花岗岩蠕变特性影响的离散元模拟研究[J]. 岩石力学与工程学报,2019,38(10):2069-2083. (HU Xunjian, BIAN Kang, LIU Jian, et al. Discrete element simulation study on the influence of microstructure heterogeneity on the creep characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2069-2083. (in Chinese)

    HU Xunjian, BIAN Kang, LIU Jian, et al. Discrete element simulation study on the influence of microstructure heterogeneity on the creep characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2069-2083. (in Chinese))
    [17] POTYONDY D O. Simulating stress corrosion with a bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 677-691. doi:  10.1016/j.ijrmms.2006.10.002
    [18] LI X F, ZHANG Q B, LI H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3785-3817. doi:  10.1007/s00603-018-1566-2
    [19] 丛宇, 王在泉, 郑颖人, 等. 基于颗粒流原理的岩石类材料细观参数的试验研究[J]. 岩土工程学报,2015,37(6):1031-1040. (CONG Yu, WANG Zaiquan, ZHENG Yingren, et al. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. (in Chinese) doi:  10.11779/CJGE201506009

    CONG Yu, WANG Zaiquan, ZHENG Yingren, et al. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. (in Chinese)) doi:  10.11779/CJGE201506009
    [20] 于辉, 刘少伟, 贾后省, 等. 不同围压下闭合单裂隙砂岩力学响应及能量耗散机制研究[J]. 采矿与安全工程学报,2020,37(2):385-393. (YU Hui, LIU Shaowei, JIA Housheng, et al. Mechanical response and energy dissipation mechanism of closed single fractured sandstone under different confining pressures[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 385-393. (in Chinese) doi:  10.13545/j.cnki.jmse.2020.02.019

    YU Hui, LIU Shaowei, JIA Housheng, et al. Mechanical response and energy dissipation mechanism of closed single fractured sandstone under different confining pressures[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 385-393. (in Chinese)) doi:  10.13545/j.cnki.jmse.2020.02.019
    [21] 黄达, 岑夺丰. 单轴静-动相继压缩下单裂隙岩样力学响应及能量耗散机制颗粒流模拟[J]. 岩石力学与工程学报,2013,32(9):1926-1936. (HUANG Da, CEN Duofeng. Mechanical responses and energy dissipation mechanism of rock specimen with a single fissure under static and dynamic uniaxial compression using particle flow code simulations[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1926-1936. (in Chinese) doi:  10.3969/j.issn.1000-6915.2013.09.026

    HUANG Da, CEN Duofeng. Mechanical responses and energy dissipation mechanism of rock specimen with a single fissure under static and dynamic uniaxial compression using particle flow code simulations[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1926-1936. (in Chinese)) doi:  10.3969/j.issn.1000-6915.2013.09.026
  • [1] 曾诚, 邱斐, 丁少伟, 周婕, 徐剑波, 王玲玲, 尹雨然.  复式断面明渠流能量及动量校正系数研究 . 水利水运工程学报, doi: 10.12170/20210705002
    [2] 甘磊, 冯先伟, 沈振中.  盐冻作用下水工混凝土强度演化模型 . 水利水运工程学报, doi: 10.12170/20210725001
    [3] 詹懿德, 汪发祥, 佘恬钰, 沈佳轶, 吕庆.  考虑围压效应的块状节理岩体变形破坏数值模拟 . 水利水运工程学报, doi: 10.12170/20211220002
    [4] 楼晨笛, 张朝鹏, 吴世勇, 周济芳, 彭媛, 艾婷, 刘洋, 张茹, 任利.  深埋锦屏大理岩力学特性与能量演化研究 . 水利水运工程学报, doi: 10.12170/20210524002
    [5] 王浩然, 王志亮, 王星辰.  含缺陷岩样三轴压缩变形破坏过程颗粒流模拟 . 水利水运工程学报, doi: 10.12170/20200912001
    [6] 丁英勋, 王志亮, 黄佑鹏.  含充填节理岩体中应力波传播规律的三维模拟 . 水利水运工程学报, doi: 10.12170/20190529001
    [7] 肖洋, 彭刚, 黄超, 罗曦, 彭竹君.  压剪共同作用下混凝土的损伤演化研究 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.02.015
    [8] 肖洋, 彭刚, 王乾峰, 罗曦.  考虑率效应的混凝土压剪强度及破坏准则试验研究 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.04.007
    [9] 郇久阳, 张志强, 李宁.  含交错节理岩石直剪试验颗粒流模拟 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.04.002
    [10] 姚吉康, 王志亮.  华山花岗岩力学特性及能量演化规律研究 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2018.03.011
    [11] 柳琪, 彭刚, 徐童淋, 杨乃鑫.  冻融劣化混凝土循环加卸载外包络线及能量演化 . 水利水运工程学报, doi: 10.16198/j.cnki.1009-640X.2017.06.012
    [12] 李爱华, 朱 江.  基于二维裂隙网络模拟的岩块搜索与岩层追踪方法 . 水利水运工程学报,
    [13] 伍小林,王学滨,潘一山.  单向压缩条件下圆形颗粒体含孔洞试样的力学模拟 . 水利水运工程学报,
    [14] 刘汉涛,常建忠,马理强,安康.  两相流动中椭圆颗粒沉降规律的数值模拟 . 水利水运工程学报,
    [15] 沈珠江,陈铁林.  岩样变形和破坏过程的二元介质模拟 . 水利水运工程学报,
    [16] 周飞平,刘光廷.  饱和软岩受压硬化、强度折减及本构模型 . 水利水运工程学报,
    [17] 何蕴龙,段亚辉,蒋忠.  坝工混凝土缺陷的检测与修补技术 . 水利水运工程学报,
    [18] 程和森,曹更新,王守家,魏明成.  钢板下浇注混凝土空洞缺陷中子探查新技术 . 水利水运工程学报,
    [19] 黄亦芬,窦国仁.  均质高浓度流从层流向紊流的过渡及紊动强度 . 水利水运工程学报,
    [20] 蒋彭年.  岩石的破坏准则 . 水利水运工程学报,
  • 加载中
图(11) / 表 (1)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12

/

返回文章
返回