Model test study on landslide dam material improvement by rolling dynamic compaction
-
摘要: 为丰富堰塞坝开发利用理论,探究适宜堰塞坝料的密实方法和设计参数,研究了冲击碾压方法对堰塞坝料的密实效果和密实机理。基于相似定律设计了不同冲击轮质量及牵引速度的天然堰塞坝料室内冲击碾压模型试验,综合采用宏-细观方法测试了冲击碾压后的动应力发展传播规律、变形特性、颗粒运动和加固效果等。试验结果表明:(1)冲击轮引起的冲击荷载为三角形脉冲荷载,产生的接触应力随着牵引速度和冲击轮质量的增大而增大,引起的地基动土应力随着碾压遍数的增加而增加;(2)冲击碾压对堰塞坝料地基表层的加固效果良好,地基内部动土应力和位移皆随深度迅速减小,深度3.6 m范围内的堰塞坝料强度提升明显;(3)提高冲击轮的速度对加固效果的影响更大,可以有效提高冲击动应力,进而使得冲碾加固效果向深层传递;(4)满足易贡堰塞坝料的冲击碾压参数为:冲击轮质量13.5 t,牵引速度3.46 m/s,碾压遍数12。Abstract: In order to enrich the development and utilization theory of landslide dam, explore the densification method and design parameters suitable for landslide material, and study the densification effect and mechanism of rolling dynamic compaction on landslide material, and based on the similarity law, the laboratory model test of rolling dynamic compaction on natural landslide material with different impact roller weights and traction speeds was designed. The macroscopic and meso-method was comprehensively used to test the development and propagation law of dynamic stress, deformation characteristics, particle movement and reinforcement effect after rolling dynamic compaction. The test results showed that the impact load caused by the roller was a triangular pulse load, the contact stress increased with the increasing traction speed and impact roller weight, and the dynamic soil stress of foundation increased with the increasing roller passes. Rolling dynamic compaction had a good reinforcement effect on the surface layer of landslide dam material foundation. The dynamic soil stress and displacement inside the foundation decreased rapidly with the depth, and the strength within the depth of 3.6 m increased significantly. The increasing speed of the impact roller had a greater improvement on the reinforcement effect, which can effectively improve the impact dynamic stress, and then transfer the reinforcement effect of roller to the deep layer. The rolling dynamic compaction parameters suitable for the Yigong landslide dam material are: the impact roller weight is 13.5 t, the traction speed is 3.46 m/s, and the number of passes is 12.
-
Key words:
- landslide dam /
- reinforcement /
- rolling dynamic compaction /
- model test /
- reinforcement effect /
- dynamic stress /
- traction speed
-
表 1 冲击碾压试验原型与模型参数对照
Table 1. Comparison of parameters for inrolling dynamic compaction between prototype and model test
序号 冲击轮质量/kg 冲击轮外接圆直径/cm 牵引速度/(m·s−1) 原型 模型 原型 模型 原型 模型 1 7 300 4.22 210 17.5 1.73 0.5 2 7 300 4.22 210 17.5 3.46 1.0 3 13 500 7.81 210 17.5 1.73 0.5 4 13 500 7.81 210 17.5 3.46 1.0 -
[1] 蔡正银, 钟启明, 何宁, 等. 堰塞体状态相关剪胀理论与坝体溃决演化规律研究构想[J]. 工程科学与技术,2021,53(6):21-32 CAI Zhengyin, ZHONG Qiming, HE Ning, et al. Research framework of the state-dependent dilatancy theory andbreach evolution law of landslide dam[J]. Advanced Engineering Sciences, 2021, 53(6): 21-32. (in Chinese) [2] 石振明, 熊曦, 彭铭, 等. 存在高渗透区域的堰塞坝渗流稳定性分析: 以红石河堰塞坝为例[J]. 水利学报,2015,46(10):1162-1171 SHI Zhenming, XIONG Xi, PENG Ming, et al. Stability analysis of landslide dam with high permeability region: a case study of Hongshihe landslide dam[J]. Journal of Hydraulic Engineering, 2015, 46(10): 1162-1171. (in Chinese) [3] 吕杰堂, 王治华, 周成虎. 西藏易贡大滑坡成因探讨[J]. 地球科学,2003,28(1):107-110 LÜ Jietang, WANG Zhihua, ZHOU Chenghu. Discussion on the occurrence of Yigong landslide in Tibet[J]. Earth Science, 2003, 28(1): 107-110. (in Chinese) [4] 李青春, 胡亚东, 施裕兵. 唐家山堰塞湖残余堰塞体稳定性研究[J]. 地下空间与工程学报,2020,16(增刊2):993-998 LI Qingchun, HU Yadong, SHI Yubing. The stability of remnant landslide dam of Tangjiashan dammed lake[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(Suppl2): 993-998. (in Chinese) [5] 年廷凯, 吴昊, 陈光齐, 等. 堰塞坝稳定性评价方法及灾害链效应研究进展[J]. 岩石力学与工程学报,2018,37(8):1796-1812 NIAN Tingkai, WU Hao, CHEN Guangqi, et al. Research progress on stability evaluation method and disaster chain effect of landslide dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1796-1812. (in Chinese) [6] 何宁, 娄炎, 何斌. 堰塞体的加固与开发利用技术[J]. 中国水利,2008(16):26-28 doi: 10.3969/j.issn.1000-1123.2008.16.008 HE Ning, LOU Yan, HE Bin. Technologies of dammed lake strengthen and utilization[J]. China Water Resources, 2008(16): 26-28. (in Chinese) doi: 10.3969/j.issn.1000-1123.2008.16.008 [7] 张宗亮, 张天明, 杨再宏, 等. 牛栏江红石岩堰塞湖整治工程[J]. 水力发电,2016,42(9):83-86 doi: 10.3969/j.issn.0559-9342.2016.09.021 ZHANG Zongliang, ZHANG Tianming, YANG Zaihong, et al. Remediation project of Hongshiyan dammed lake in Niulan River[J]. Water Power, 2016, 42(9): 83-86. (in Chinese) doi: 10.3969/j.issn.0559-9342.2016.09.021 [8] 赵元弘. 重庆小南海水库地震堆积坝体帷幕灌浆试验研究[J]. 水文地质工程地质,2005,32(3):89-93 doi: 10.3969/j.issn.1000-3665.2005.03.024 ZHAO Yuanhong. Curtain grouting experimental research of the earthquake-caused dam in Xiaonanhai Reservoir, Chongqing[J]. Hydrogeology and Engineering Geology, 2005, 32(3): 89-93. (in Chinese) doi: 10.3969/j.issn.1000-3665.2005.03.024 [9] 徐超, 陈忠清, 叶观宝, 等. 冲击碾压法处理粉土地基试验研究[J]. 岩土力学,2011,32(增刊2):389-392, 400 XU Chao, CHEN Zhongqing, YE Guanbao, et al. Experimental research on ground improvement of silt using impact roller compaction[J]. Rock and Soil Mechanics, 2011, 32(Suppl2): 389-392, 400. (in Chinese) [10] SCOTT B T, JAKSA M B, MITCHELL P W. Influence of towing speed on effectiveness of rolling dynamic compaction[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(1): 126-134. doi: 10.1016/j.jrmge.2019.10.003 [11] RANASINGHE R A T M, JAKSA M B, KUO Y L, et al. Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(2): 340-349. doi: 10.1016/j.jrmge.2016.11.011 [12] RANASINGHE R A T M, JAKSA M B, NEJAD F P, et al. Genetic programming for predictions of effectiveness of rolling dynamic compaction with dynamic cone penetrometer test results[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 815-823. doi: 10.1016/j.jrmge.2018.10.007 [13] 卞学良, 南传立, 肖汾阳, 等. 非圆柱形压实轮压实效果有限元分析[J]. 机械工程学报,2002,38(10):154-158 doi: 10.3321/j.issn:0577-6686.2002.10.036 BIAN Xueliang, NAN Chuanli, XIAO Fenyang, et al. Fem analysis of impaction effect for non-column wheels of compacting roller[J]. Chinese Journal of Mechanical Engineering, 2002, 38(10): 154-158. (in Chinese) doi: 10.3321/j.issn:0577-6686.2002.10.036 [14] KIMK, CHUN S. Finite element analysis to simulate the effect of impact rollers for estimating the influence depth of soil compaction[J]. KSCE Journal of Civil Engineering, 2016, 20(7): 2692-2701. doi: 10.1007/s12205-016-0013-8 [15] 王生新, 韩文峰, 谌文武, 等. 冲击压实路基黄土的微观特征研究[J]. 岩土力学,2006,27(6):939-944 doi: 10.3969/j.issn.1000-7598.2006.06.018 WANG Shengxin, HAN Wenfeng, CHEN Wenwu, et al. Microstudy on roadbed loess improvement by impact compaction technology[J]. Rock and Soil Mechanics, 2006, 27(6): 939-944. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.06.018 [16] 陈忠清, 徐超, 吕越. 冲击碾压加固砂土模型试验研究[J]. 岩土力学,2015,36(增刊2):525-531 doi: 10.16285/j.rsm.2015.S2.073 CHEN Zhongqing, XU Chao, LÜ Yue. Model test of impact roller compaction for dry sand[J]. Rock and Soil Mechanics, 2015, 36(Suppl2): 525-531. (in Chinese) doi: 10.16285/j.rsm.2015.S2.073 [17] 陈忠清, 徐超, 叶观宝, 等. 冲击碾压模拟试验设备研制[J]. 岩土力学,2015,36(1):279-285, 292 CHEN Zhongqing, XU Chao, YE Guanbao, et al. Development of a simulation device for impact roller[J]. Rock and Soil Mechanics, 2015, 36(1): 279-285, 292. (in Chinese) [18] 中华人民共和国建设部. 土的工程分类标准: GB/T 50145—2007[S]. 北京: 中国计划出版社, 2008. Ministry of Construction of the People’s Republic of China. Standard for engineering classification of soil: GB/T 50145—2007[S]. Beijing: China Planning Press, 2008. (in Chinese) [19] 王锃, 郑凌逶, 罗嗣海, 等. 砂土地基强夯室内模型试验及加固特性分析[J]. 科学技术与工程,2020,20(18):7394-7400 WANG Zeng, ZHENG Lingwei, LUO Sihai, et al. Laboratory model test and reinforcement characteristics analysison dynamic compaction of sand foundation[J]. Science Technology and Engineering, 2020, 20(18): 7394-7400. (in Chinese) -