Influence of outfitting wharf project at the entrance of tidal river network on water diversion and drainage
-
摘要: 与内陆地区相比,城市感潮河网在防洪排涝和水环境保护等方面面临较大压力,沿江水闸利用潮差进行内河引排水是提升感潮河网防洪排涝能力、改善水环境的有效途径,但临江工业的发展与感潮河网引排水容易形成矛盾。以南通农场闸闸口附近的惠生重工3#舾装码头新建工程为背景,采用数学模型研究舾装码头工程对感潮河网引排水的影响,提出一种将船舶概化成活动闸门的船舶阻水作用分析的等效处理方法,并验证其合理性。研究认为舾装码头工程口门拓宽疏浚措施对感潮河网排水排涝有利、对感潮河网引水不利,口门泊船对感潮河网引排水影响甚微。Abstract: Compared with inland areas, the urban tidal river network faces greater pressure in terms of flood and waterlog control and water environment protection. The use of tidal range for inland river diversion and drainage by the sluices along outer river is an effective way to enhance the flood control and drainage capacity of tidal river network and improve its water environment quality. However, the development of riverside industries along outer river is in contradiction with the water diversion and drainage of tidal river network. For arguing the new construction of Huisheng Heavy Industry 3# Outfitting Wharf near the gate of Nantong Farm Sluice, in this research, mathematical models were used to investigate the influence of the outfitting wharf project on the diversion and drainage of tidal river network, and a generalization of ship into movable gate was proposed. The equivalent treatment method for the analysis of the water blocking effect of the ship and its rationality were verified. It is concluded that the widening of the dredging measures at the entrance of the outfitting wharf project are beneficial to the drainage of the tidal river network, but are not good for the water diversion of the tidal river network. Ship mooring at the entrance has little effect on the diversion and drainage of the tidal river network.
-
Key words:
- tidal river network /
- outfitting wharf /
- sluice /
- water diversion and drainage /
- numerical simulation
-
表 1 沿江水闸情况
Table 1. Data of sluices along the Yangtze River
涵闸名称 建成时间 闸孔/个 净宽/
m闸底
高程/m设计流量/
(m3·s−1)南通农场闸 2009年5月 1 12 −3 96 东方红出江闸站 2009年6月 1 5 −1 25 团结闸 2003年12月 3 12 −3 75 注:东方红出江闸建有设计流量为4 m3/s的泵站。 表 2 调水期间水闸启闭工况
Table 2. Sluice opening and closing conditions during water transfer
日期 水闸启闭工况 开启时间段 南通农场闸 东方红出江闸 团结闸 农场中心套闸 2020-12-09 完全打开 关闭 关闭 关闭 11:10—17:45 2020-12-10 关闭 完全打开 关闭 关闭 9:55—14:30 2020-12-11 关闭 关闭 完全打开 关闭 13:30—17:30 表 3 率定验证效果评价
Table 3. The evaluation of calibration and verification effects
评价项 ERMS r CNSE 营船港潮位 0.058 m 0.990 0.944 纬六河水位 0.030 m 0.994 0.941 东方红出江闸流量 1.181 m3/s 0.896 0.764 团结闸流量 2.561 m3/s 0.968 0.831 团结河水位 0.030 m 0.980 0.825 表 4 码头建成前后排水调度模拟结果
Table 4. Simulation results of drainage with/without the wharf
项目 农场闸1 d
排水总量/
万m3农场闸闸
下断面最
高水位/m农场闸闸
下断面最
低水位/m农场中心
河断面最
高水位/m农场中心
河断面最
低水位/m团结河断
面最高
位/m团结河断
面最低水
位/m王子竖河
断面最高
水位/m王子竖河
断面最低
水位/m建成前① 11.47 2.64 0.86 1.20 1.12 1.20 1.12 1.21 1.11 建成后(无泊船)② 11.51 2.64 0.85 1.20 1.12 1.20 1.12 1.21 1.11 建成后(有泊船)③ 11.51 2.64 0.85 1.20 1.12 1.20 1.12 1.21 1.11 ②−① 0.04 0 −0.01 0 0 0 0 0 0 ③−① 0.04 0 −0.01 0 0 0 0 0 0 表 5 码头建成前后引水调度模拟结果
Table 5. Simulation results of water diversion with/without the wharf
项目 农场闸1 d
引水总量/
万m3农场闸闸
下断面最
高水位/m农场闸闸
下断面最
低水位/m农场中心
河断面最
高水位/m引水结束后
农场中心
河断面水位/m团结河断
面最高水
位/m引水结束后
团结河断面
水位/m王子竖河
断面最高
水位/m引水结束后
王子竖河断
面水位/m建成前① 28.76 2.85 −0.08 1.18 1.18 1.18 1.18 1.19 1.17 建成后(无泊船)② 27.55 2.86 −0.08 1.18 1.18 1.18 1.18 1.19 1.17 建成后(有泊船)③ 27.54 2.86 −0.08 1.18 1.18 1.18 1.18 1.19 1.17 ②−① −1.21 0.01 0 0 0 0 0 0 0 ③−① −1.22 0.01 0 0 0 0 0 0 0 -
[1] 杨莉玲, 杨芳, 余顺超, 等. 感潮河网区风暴潮洪水风险模拟研究——以中顺大围为例[J]. 人民珠江,2018,39(8):4-8 doi: 10.3969/j.issn.1001-9235.2018.08.002 YANG Liling, YANG Fang, YU Shunchao, et al. Study on simulation of storm surge flood risk in tidal river network area—take the Zhongshun protection zone as an example[J]. Pearl River, 2018, 39(8): 4-8. (in Chinese) doi: 10.3969/j.issn.1001-9235.2018.08.002 [2] 邓婧, 张辰, 莫祖澜, 等. 感潮河网地区水安全保障系统方案[J]. 给水排水,2019,45(9):50-54 doi: 10.13789/j.cnki.wwe1964.2019.09.010 DENG Jing, ZHANG Chen, MO Zulan, et al. A systematic solution to water security in tidal river network region[J]. Water & Wastewater Engineering, 2019, 45(9): 50-54. (in Chinese) doi: 10.13789/j.cnki.wwe1964.2019.09.010 [3] GU Z H, CAO X M, LIU G L, et al. Optimizing operation rules of sluices in river networks based on knowledge-driven and data-driven mechanism[J]. Water Resources Management, 2014, 28(11): 3455-3469. doi: 10.1007/s11269-014-0679-y [4] 彭泽宇, 刘祚秋, 富明慧. 内河锚泊浮式码头水动力性能分析[J]. 水利水运工程学报,2015(3):53-58 PENG Zeyu, LIU Zuoqiu, FU Minghui. Hydrodynamic analysis of a moored floating pier on an inland river[J]. Hydro-Science and Engineering, 2015(3): 53-58. (in Chinese) [5] 刘哲, 魏文礼, 冯小香, 等. 舾装码头工程对大辽河口水沙运动的模拟分析[J]. 水利与建筑工程学报,2009,7(4):109-113 LIU Zhe, WEI Wenli, FENG Xiaoxiang, et al. Numerical modeling for tidal current and sediment at Daliao River’s estuary in marine outfitting quay project[J]. Journal of Water Resources and Architectural Engineering, 2009, 7(4): 109-113. (in Chinese) [6] 刘哲, 魏文礼, 冯小香, 等. 舾装码头工程对大辽河口流场的影响[J]. 水道港口,2008,29(6):394-400 doi: 10.3969/j.issn.1005-8443.2008.06.003 LIU Zhe, WEI Wenli, FENG Xiaoxiang, et al. Effect of outfitting quay project on tidal current at Daliaohe estuary[J]. Journal of Waterway and Harbor, 2008, 29(6): 394-400. (in Chinese) doi: 10.3969/j.issn.1005-8443.2008.06.003 [7] 孟庆杰. 限制水域运动船舶复杂粘性流场的数值模拟研究[D]. 上海: 上海交通大学, 2016. MENG Qingjie. Numerical simulations of viscous flow around the ship maneuvering in restricted waters[D]. Shanghai: Shanghai Jiaotong University, 2016. (in Chinese) [8] 中交第三航务工程勘察设计院有限公司. LNG 高端装备产品升级改造项目3#舾装码头新建工程工程可行性研究报告[R]. 上海: 中交第三航务工程勘察设计院有限公司, 2020. CCCC Third Harbor Cosultants Co., Ltd. LNG high-end equipment product upgrade project 3# outfitting wharf new construction engineering feasibility study report[R]. Shanghai: CCCC Third Harbor Cosultants Co., Ltd., 2020. (in Chinese) [9] Danish Hydraulic Institute. MIKE SHE user manual volume 2: reference guide[Z]. Denmark: Danish Hydraulic Institute, 2014. [10] 初祁, 彭定志, 徐宗学, 等. 基于MIKE11和MIKE21的城市暴雨洪涝灾害风险分析[J]. 北京师范大学学报(自然科学版),2014,50(5):446-451 CHU Qi, PENG Dingzhi, XU Zongxue, et al. Risk analysis of urban flooding by using MIKE 11 and MIKE 21[J]. Journal of Beijing Normal University (Natural Science), 2014, 50(5): 446-451. (in Chinese) [11] 施露, 董增川, 付晓花, 等. Mike Flood在中小河流洪涝风险分析中的应用[J]. 河海大学学报(自然科学版),2017,45(4):350-357 SHI Lu, DONG Zengchuan, FU Xiaohua, et al. Application of Mike Flood to analysis of flood and waterlogging risks of medium and small rivers[J]. Journal of Hohai University (Natural Sciences), 2017, 45(4): 350-357. (in Chinese) [12] 刘兴坡, 夏澄非, 柴耀智, 等. 基于MIKE FLOOD的巢湖市主城区现状排水能力与内涝风险评估[J]. 净水技术,2020,39(4):59-66 LIU Xingpo, XIA Chengfei, CHAI Yaozhi, et al. Evaluation of current drainage capacity and waterlogging risk for Chaohu City based on MIKE FLOOD[J]. Water Purification Technology, 2020, 39(4): 59-66. (in Chinese) [13] 刘晓琴, 刘国龙, 王振. MIKE系列模型在蓄滞洪区洪水模拟中的应用研究[J]. 中国农村水利水电,2020(6):10-15, 20 doi: 10.3969/j.issn.1007-2284.2020.06.002 LIU Xiaoqin, LIU Guolong, WANG Zhen. The study and application of flood simulation at detention basin based on Mike series model[J]. China Rural Water and Hydropower, 2020(6): 10-15, 20. (in Chinese) doi: 10.3969/j.issn.1007-2284.2020.06.002 [14] MA Y, JONAITIS E M, HULLE C A, et al. Impact of unreliability on intraclass correlation coefficient and its implications for studies with clustered data[J]. Alzheimer’s & Dementia, 2020, 16(Suppl10): e045550. [15] 长江勘测规划设计院有限责任公司. 横港沙整治对沿江引水通道影响研究专题报告[R]. 武汉: 长江勘测规划设计院有限责任公司, 2017. Changjiang Institute of Survey, Planning, Design and Research (CISPDR). Special report on the research on the impact of Henggang sand remediation on the water diversion channel along the river[R]. Wuhan: CISPDR, 2017. (in Chinese) [16] 顾正华, 包纲鉴, 宣国祥, 等. 升船机承船厢水动力特性试验研究[J]. 水利水运工程学报,2002(3):7-13 doi: 10.3969/j.issn.1009-640X.2002.03.002 GU Zhenghua, BAO Gangjian, XUAN Guoxiang, et al. Experimental study on hydrodynamic characteristics of ship lift chambers[J]. Hydro-Science and Engineering, 2002(3): 7-13. (in Chinese) doi: 10.3969/j.issn.1009-640X.2002.03.002 -