留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑长径比及冲刷的单桩基础侧向承载特性分析

张融圣 刘寒秋 朱嵘华 田振亚 孙香

张融圣,刘寒秋,朱嵘华,等. 考虑长径比及冲刷的单桩基础侧向承载特性分析[J]. 水利水运工程学报,2023(5):95-104. doi:  10.12170/20220419001
引用本文: 张融圣,刘寒秋,朱嵘华,等. 考虑长径比及冲刷的单桩基础侧向承载特性分析[J]. 水利水运工程学报,2023(5):95-104. doi:  10.12170/20220419001
(ZHANG Rongsheng, LIU Hanqiu, ZHU Ronghua, et al. Analysis of lateral bearing behaviors of scoured monopile foundations considering the influence of length-to-diameter ratio[J]. Hydro-Science and Engineering, 2023(5): 95-104. (in Chinese)) doi:  10.12170/20220419001
Citation: (ZHANG Rongsheng, LIU Hanqiu, ZHU Ronghua, et al. Analysis of lateral bearing behaviors of scoured monopile foundations considering the influence of length-to-diameter ratio[J]. Hydro-Science and Engineering, 2023(5): 95-104. (in Chinese)) doi:  10.12170/20220419001

考虑长径比及冲刷的单桩基础侧向承载特性分析

doi: 10.12170/20220419001
基金项目: 广东省重点领域研发计划项目(2021B0707030001);广东省科技专项资金引进重大科技创新资源项目(SDZX2020001)
详细信息
    作者简介:

    张融圣(1997—),男,云南昆明人,硕士研究生,主要从事海上风电支撑结构研究。E-mail:jeremyzrs@zju.edu.cn

    通讯作者:

    朱嵘华(E-mail:zhu.richard@zju.edu.cn

  • 中图分类号: TU473; P751

Analysis of lateral bearing behaviors of scoured monopile foundations considering the influence of length-to-diameter ratio

  • 摘要: 冲刷是海上风电单桩基础设计中需要考虑的重要因素,然而计算时通常忽略局部冲刷坑的几何形状及桩基入土段长径比(L/D)的影响,导致设计偏于保守。针对这一问题,建立考虑局部冲刷坑形态的海上风电桩基础三维有限元模型,研究冲刷作用下不同长径比桩基础的侧向承载特性变化规律,提出适用于受局部冲刷小长径比单桩基础的简化梁-弹簧分析模型并进行验证。研究结果表明:小长径比单桩基础的侧向响应对局部冲刷深度较为敏感。随着冲刷深度的增大,基底反力和桩侧垂向摩阻力等土反力分量对桩基水平承载力的贡献也随之增大,仅考虑桩侧土反力的传统API p-y曲线方法难以适用受冲刷单桩基础的计算分析,须考虑基底效应的影响。研究结果可为海上风电基础设计分析提供参考。
  • 图  1  有限元模型

    Figure  1.  Finite element model

    图  2  桩顶荷载-位移曲线对比

    Figure  2.  Comparison of pile head load-displacement curves predicted by FE model and centrifuge test

    图  3  PILE2桩顶荷载-位移曲线对比

    Figure  3.  Comparison of pile head load-displacement curves of PILE2

    图  4  不同冲刷坑形态对PILE4和PILE1桩身变形的影响($ F=3\;\mathrm{M}\mathrm{N} $

    Figure  4.  Influences of different scour pit’s shapes on deflection of PILE4 and PILE1 (F=3 MN)            

    图  5  水平受荷桩受力分析

    Figure  5.  Free-body diagram of lateral loaded pile

    图  6  不同冲刷工况下$ {H}_{\mathrm{b}} $$ {M}_{\mathrm{b}} $$ {\tau }_{\mathrm{v}} $对PILE2水平承载力贡献

    Figure  6.  The contributions of $ {H}_{\mathrm{b}} $$ {M}_{\mathrm{b}} $ and $ {\tau }_{\mathrm{v}} $ to the lateral bearing capacity of PILE2 under various scour cases

    图  7  不同长径比桩基基底效应对桩基水平承载力的贡献

    Figure  7.  Variation of proportions of pile base effects to the horizontal bearing capacity of pile

    图  8  等效深度概念图示

    Figure  8.  Schematic sketch of equivalent depth

    图  9  PILE3冲刷前后同一深度处p-y曲线对比

    Figure  9.  Comparison of p-y curves for PILE3 at the same depth before and after scour

    图  10  PILE1冲刷前后同一深度处p-y曲线对比

    Figure  10.  Comparison of p-y curves for PILE1 at the same depth before and after scour

    图  11  PILE3基底土反力曲线

    Figure  11.  Pile base soil resistance curves of PILE3

    图  12  受局部冲刷海上风电单桩基础的简化梁-弹簧计算模型

    Figure  12.  The simplified beam-spring model for OWT monopile subjected to local scour

    图  13  不同模型对PILE3桩顶载荷-位移曲线计算结果对比

    Figure  13.  Comparison of pile head load-displacement curves of PILE3 predicted by different models

    图  14  不同模型对PILE3桩身变形与弯矩计算结果对比(F=3 MN)

    Figure  14.  Comparison of deflection and moment along PILE3 predicted by different models (F=3 MN)

    表  1  仿真桩基参数

    Table  1.   Pile parameters used in FE model

    桩基编号入土深度/m入土段长径比土/桩刚度比桩基属性
    PILE145.0016.4414.25柔性
    PILE222.008.023.66偏刚性
    PILE319.257.013.87偏刚性
    PILE416.506.07.49偏刚性
    下载: 导出CSV

    表  2  仿真冲刷工况设置

    Table  2.   Scour cases used in FE model

    冲刷形态工况编号冲刷深度/m冲刷坑坡度/(°)
    无冲刷N-100
    局部冲刷L-10.5D30
    L-21.0D
    L-31.5D
    整体冲刷G-10.5D0
    G-21.0D
    G-31.5D
    下载: 导出CSV
  • [1] LIN Y J, LIN C. Effects of scour-hole dimensions on lateral behavior of piles in sands[J]. Computers and Geotechnics, 2019, 111: 30-41. doi:  10.1016/j.compgeo.2019.02.028
    [2] WHITEHOUSE R J S, HARRIS J M, SUTHERLAND J, et al. The nature of scour development and scour protection at offshore windfarm foundations[J]. Marine Pollution Bulletin, 2011, 62(1): 73-88. doi:  10.1016/j.marpolbul.2010.09.007
    [3] PEDER HYLDAL SØRENSEN S, BO IBSEN L. Assessment of foundation design for offshore monopiles unprotected against scour[J]. Ocean Engineering, 2013, 63: 17-25. doi:  10.1016/j.oceaneng.2013.01.016
    [4] DNV GL AS. Support structures for wind turbines: DNV-GL-ST-0126[S]. Oslo: DNV GL AS, 2018.
    [5] RP A P I. Geotechnical and foundation design considerations[S]. Washington D. C.: API RP 2GEO. API, 2014.
    [6] LIN C, JIANG W Y. Evaluation of vertical effective stress and pile tension capacity in sands considering scour-hole dimensions[J]. Computers and Geotechnics, 2019, 105: 94-98. doi:  10.1016/j.compgeo.2018.09.013
    [7] 漆文刚, 高福平. 冲刷对海上风力机单桩基础水平承载特性的影响[J]. 中国科学: 物理学 力学 天文学,2016,46(12):83-92

    QI Wengang, GAO Fuping. Effects of scour on horizontal bearing behavior of monopile foundations for offshore wind turbines[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2016, 46(12): 83-92. (in Chinese)
    [8] 陈静, 田德, 闫肖蒙, 等. 局部冲刷作用下海上风电机组支撑结构响应[J]. 太阳能学报,2019,40(5):1401-1407

    CHEN Jing, TIAN De, YAN Xiaomeng, et al. Support structure response of offshore wind turbines under local scour[J]. Acta Energiae Solaris Sinica, 2019, 40(5): 1401-1407. (in Chinese)
    [9] QI W G, GAO F P, RANDOLPH M F, et al. Scour effects on p–y curves for shallowly embedded piles in sand[J]. Géotechnique, 2016, 66(8): 648-660.
    [10] BAYTON S M , BLACK J A . The effect of scour on monopile lateral behaviour[C]∥XVII European Conference on Soil Mechanics and Geotechnical Engineering-ECSMGE. Reykjavik: International Society for Soil Mechanics and Geotechnical Engineering, 2019.
    [11] CHORTIS G, ASKARINEJAD A, PRENDERGAST L J, et al. Influence of scour depth and type on p-y curves for monopiles in sand under monotonic lateral loading in a geotechnical centrifuge[J]. Ocean Engineering, 2020, 197: 106838. doi:  10.1016/j.oceaneng.2019.106838
    [12] LIANG F Y, ZHANG H, CHEN S L. Effect of vertical load on the lateral response of offshore piles considering scour-hole geometry and stress history in marine clay[J]. Ocean Engineering, 2018, 158: 64-77. doi:  10.1016/j.oceaneng.2018.03.070
    [13] ZHANG H, CHEN S L, LIANG F Y. Effects of scour-hole dimensions and soil stress history on the behavior of laterally loaded piles in soft clay under scour conditions[J]. Computers and Geotechnics, 2017, 84: 198-209. doi:  10.1016/j.compgeo.2016.12.008
    [14] HONG Y, HE B, WANG L Z, et al. Cyclic lateral response and failure mechanisms of semi-rigid pile in soft clay: centrifuge tests and numerical modelling[J]. Canadian Geotechnical Journal, 2017, 54(6): 806-824. doi:  10.1139/cgj-2016-0356
    [15] REESE L C, COX W R, KOOP F D. Analysis of laterally loaded piles in sand[C]∥Offshore technology in civil engineering hall of fame papers from the early years. Houston, Texas: OnePetro, 1974: 95-105.
    [16] REESE L C, COX W R, KOOP F D. Field testing and analysis of laterally loaded piles on stiff clay[C]∥Offshore Technology Conference. Houston, Texas: OnePetro, 1975.
    [17] BYRNE B W, BURD H J, ZDRAVKOVIĆ L, et al. PISA: new design methods for offshore wind turbine monopiles[J]. Revue Franç aise De Géotechnique, 2019(158): 3.
    [18] BYRNE B, MCADAM R, BURD H, et al. New design methods for large diameter piles under lateral loading for offshore wind applications[M]∥Frontiers in Offshore Geotechnics III. Florida: CRC Press, 2015: 705-710.
    [19] BURD H J, TABORDA D M G, ZDRAVKOVIĆ L, et al. PISA design model for monopiles for offshore wind turbines: application to a marine sand[J]. Géotechnique, 2020, 70(11): 1048-1066.
    [20] POULOS H G, HULL T S. The role of analytical geomechanics in foundation engineering[C]∥Foundation Engineering: Current Principles and Practices. New York: ASCE, 1989: 1578-1606.
    [21] MURPHY G, IGOE D, DOHERTY P, et al. 3D FEM approach for laterally loaded monopile design[J]. Computers and Geotechnics, 2018, 100: 76-83. doi:  10.1016/j.compgeo.2018.03.013
    [22] 朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报,2013,35(10):1807-1815

    ZHU Bin, XIONG Gen, LIU Jinchao, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807-1815. (in Chinese)
    [23] BHATTACHARYA S, NIKITAS G, ARANY L, et al. Soil-structure interactions(SSI) for offshore wind turbines[J]. Engineering & Technology Reference, 2017, 1(1): 24, 16.
    [24] WANG L Z, ZHOU W J, GUO Z, et al. Frequency change and accumulated inclination of offshore wind turbine jacket structure with piles in sand under cyclic loadings[J]. Ocean Engineering, 2020, 217: 108045. doi:  10.1016/j.oceaneng.2020.108045
    [25] WANG L Z, LAI Y Q, HONG Y, et al. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios[J]. Ocean Engineering, 2020, 212: 107492. doi:  10.1016/j.oceaneng.2020.107492
    [26] LIN C, HAN J, BENNETT C, et al. Analysis of laterally loaded piles in soft clay considering scour-hole dimensions[J]. Ocean Engineering, 2016, 111: 461-470. doi:  10.1016/j.oceaneng.2015.11.029
    [27] DAI S, HAN B, WANG B G, et al. Influence of soil scour on lateral behavior of large-diameter offshore wind-turbine monopile and corresponding scour monitoring method[J]. Ocean Engineering, 2021, 239: 109809. doi:  10.1016/j.oceaneng.2021.109809
    [28] LIN C, WU R. Evaluation of vertical effective stress and pile lateral capacities considering scour-hole dimensions[J]. Canadian Geotechnical Journal, 2019, 56(1): 135-143. doi:  10.1139/cgj-2017-0644
    [29] 龚晓南. 桩基工程手册[M]. 2版. 北京: 中国建筑工业出版社, 2016.

    GONG Xiaonan. Pile foundation engineering manual[M]. 2nd ed. Beijing: China Construction Industry Press, 2016. (in Chinese)
  • [1] 李最森, 章琪, 魏荣灏, 张芝永, 吴智敏.  多波束定点实时冲刷监测系统构建及应用 . 水利水运工程学报, 2023, (6): 1-7. doi: 10.12170/20221026001
    [2] 李登松, 唐金波, 金鑫, 漆力健, 戴光清, 龚月婷.  进占方式对戗堤局部冲刷影响的三维数值模拟 . 水利水运工程学报, 2023, (1): 53-62. doi: 10.12170/20210309004
    [3] 李文轩, 范开放, 刘永刚, 朱洵.  粉砂地基中复合筒型基础水平承载特性研究 . 水利水运工程学报, 2023, (2): 87-95. doi: 10.12170/20220426003
    [4] 闫杰超, 陈靖, 徐华, 贾恩实, 陆杨.  变截面方形桥墩折冲效果数值模拟 . 水利水运工程学报, 2022, (2): 68-74. doi: 10.12170/20210311001
    [5] 杨元平, 张芝永, 李最森, 曾剑, 韩佳楠, 陈刚.  跨海桥梁基础冲刷特征研究 . 水利水运工程学报, 2021, (4): 131-137. doi: 10.12170/20210105002
    [6] 戚蓝, 曾庆达, 吉顺文.  天然河道丁坝群局部冲刷三维数值模拟 . 水利水运工程学报, 2020, (1): 59-65. doi: 10.12170/20180920001
    [7] 程永舟, 吕行, 王文森, 黄筱云, 夏波.  波流作用下淹没圆柱局部冲深影响因素分析 . 水利水运工程学报, 2019, (6): 69-76. doi: 10.16198/j.cnki.1009-640X.2019.06.008
    [8] 蒋建平, 陈文杰, 杨栓.  局部冲刷对部分埋入单桩水平承载性状的影响 . 水利水运工程学报, 2017, (3): 64-70. doi: 10.16198/j.cnki.1009-640X.2017.03.009
    [9] 何叶, 赵明阶, 胡丹妮.  海上风机三桩基础与上部结构动力响应分析 . 水利水运工程学报, 2016, (2): 17-23.
    [10] 王祚, 牟献友, 李春江, 田剑浩.  不同流量下环翼型防冲板结构优化试验 . 水利水运工程学报, 2015, (2): 44-49.
    [11] 祁一鸣, 陆培东, 曾成杰, 陈可锋.  海上风电桩基局部冲刷试验研究 . 水利水运工程学报, 2015, (6): 60-67.
    [12] 丁晶晶, 陆彦, 陆永军.  透水框架在改进丁坝结构型式上的应用 . 水利水运工程学报, 2014, (6): 30-38.
    [13] 李炜, 卞恩林, 仲伟秋, 方 滔, 姜鹏宾, 徐 江.  海上风电大直径单桩基础灌浆连接段轴向静载荷试验 . 水利水运工程学报, 2014, (5): 41-46.
    [14] 倪志辉, 王明会, 张绪进.  潮流作用下复合桥墩局部冲刷研究 . 水利水运工程学报, 2013, (2): 45-51.
    [15] 张林,程琳,孙东坡,张先起.  铁路斜交桥对河道行洪的影响及对策 . 水利水运工程学报, 2012, (1): 36-42.
    [16] 李炜,郑永明,孙杏建,罗金平,赵生校.  加装稳定翼的海上风电大直径单桩基础数值仿真 . 水利水运工程学报, 2012, (3): 56-63.
    [17] 高正荣,卢中一.  长大桥梁深水超大型沉井基础施工成套关键技术研究——获2010年度中国公路学会科学技术奖特等奖 . 水利水运工程学报, 2011, (3): -.
    [18] 李炜,李华军,郑永明,周永.  海上风电基础结构疲劳寿命分析 . 水利水运工程学报, 2011, (3): -.
    [19] 吴门伍,严黎,陈立,熊洪,周家俞,陈荣力.  武汉天兴洲公铁两用桥2#浮运围堰施工期局部冲刷试验研究 . 水利水运工程学报, 2007, (3): 26-32.
    [20] 韩玉芳,陈志昌.  丁坝回流长度的变化 . 水利水运工程学报, 2004, (3): 33-36.
  • 加载中
图(14) / 表 (2)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  47
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 网络出版日期:  2023-09-22
  • 刊出日期:  2023-10-30

/

返回文章
返回