Horizontal bearing characteristics of composite bucket foundation of offshore wind turbines in silty sand
-
摘要: 为揭示粉砂地基中海上风电筒型基础水平承载特性,采用有限元法进行数值建模,并利用离心模型试验结果进行对比验证。研究结果表明:荷载前侧筒壁纵向土压力呈拱形分布,荷载后侧筒壁纵向土压力呈三角形分布,垂直加载时侧筒壁纵向土压力接近静止土压力,且随着荷载的增加,纵向土压力非线性分布愈明显;筒壁径向土压力与cosθ(θ为水平投影平面上计算点与基础中心连线与荷载方向的夹角)呈线性关系,随着荷载的增加,二者间亦逐渐呈非线性变化;随着荷载的增加,基础转动中心向上方和加载方向移动,达到极限承力时,转动中心的深度大致位于筒体底端附近;长径比不影响转动中心的运动规律,且长径比对转动中心竖向位置的影响远大于水平位置。研究结果可为基础结构的优化设计提供参考。Abstract: To reveal the horizontal bearing characteristics of composite bucket foundation in silty sand, the finite element software is used in this paper, and the numerical model is verified by the results of centrifugal model test. Main conclusions are as follows: on the front side, the distribution of earth pressure is arched and earth pressure at the bottom is reduced; on the rear side, the earth pressure distribution is roughly triangular, and the earth pressure on the bucket wall in vertical load direction is close to the static earth pressure. There is a linear relationship between the bucket wall earth pressure and cosθ (the angle between the calculation point and the load direction). With the increment of load level, the rotation center of composite bucket foundation moves up and to the load direction, and as the load reaches bearing capacity, the rotation center is located at bucket tip. The aspect ratio of composite bucket foundation does not affect the motion law of the rotation center, and the effect of rotation center on the vertical position of rotation center is obviously greater than that on the horizontal position. The research results provide a reference for optimal structural design of the foundation.
-
Key words:
- composite bucket foundation /
- silty sand /
- horizontal bearing capacity /
- earth pressure /
- aspect ratio
-
表 1 土质参数
Table 1. Parameters of soil
c/kPa φ/° Rf K n Kur/kPa cd nd Rd 4 33.0 0.855 179.1 0.66 358.2 0.008 5 0.785 4 0.809 注:表中c为黏聚力;φ为摩擦角;Rf为破坏比;K和n为模型参数,通过三轴试验数据拟合得到;Kur为回弹体积模量;cd为围压,为标准大气压强时最大收缩体应变;nd为收缩体应变随围压增加的幂次;Rd为发生最大收缩时的偏应力和极限偏应力之比。 -
[1] ZHANG P Y, LIANG D S, DING H Y, et al. Floating state of a one-step integrated transportation vessel with two composite bucket foundations and offshore wind turbines[J]. Journal of Marine Science and Engineering, 2019, 7(8): 263. doi: 10.3390/jmse7080263 [2] 李文轩. 海上风电复合筒型基础水平承载特性研究[D]. 南京: 南京水利科学研究院, 2018. LI Wenxuan. Horizontal bearing characteristics of composite bucket foundation for offshore wind turbine[D]. Nanjing: Nanjing Hydraulic Research Institute, 2018. (in Chinese) [3] Det Norske Veritas. Design of offshore wind turbine structures: DNV-OS-J101[S]. Norway: Computer Typesetting (FM+SGML) by det Norske Veritas, 2007. [4] 国家能源局. 海上风电场工程风电机组基础设计规范: NB/T 10105—2018[S]. 北京: 中国水利水电出版社, 2018. National Energy Bureau of the People’s Republic of China. Code for design of wind turbine foundations for offshore wind power projects: NB/T 10105—2018[S]. Beijing: China Water Power Press, 2018. (in Chinese) [5] PARK J S, PARK D. Vertical bearing capacity of bucket foundation in sand overlying clay[J]. Ocean Engineering, 2017, 134: 62-76. doi: 10.1016/j.oceaneng.2017.02.015 [6] FU D, GAUDIN C, TIAN Y, et al. Post-preload undrained uniaxial capacities of skirted circular foundations in clay[J]. Ocean Engineering, 2018, 147: 355-369. doi: 10.1016/j.oceaneng.2017.10.029 [7] DING H Y, HU R Q, ZHANG P Y, et al. Load bearing behaviors of composite bucket foundations for offshore wind turbines on layered soil under combined loading[J]. Ocean Engineering, 2020, 198: 106997. doi: 10.1016/j.oceaneng.2020.106997 [8] 刘润, 祁越, 李宝仁, 等. 复合加载模式下单桩复合筒型基础地基承载力包络线研究[J]. 岩土力学,2016,37(5):1486-1496 doi: 10.16285/j.rsm.2016.05.033 LIU Run, QI Yue, LI Baoren, et al. Failure envelopes of single-pile composite bucket foundation of offshore wind turbine under combined loading conditions[J]. Rock and Soil Mechanics, 2016, 37(5): 1486-1496. (in Chinese) doi: 10.16285/j.rsm.2016.05.033 [9] 张浦阳, 魏宇墨, 校建东, 等. 复合筒型基础在粉土中的抗扭承载特性研究[J]. 太阳能学报,2021,42(9):270-278 doi: 10.19912/j.0254-0096.tynxb.2019-0870 ZHANG Puyang, WEI Yumo, XIAO Jiandong, et al. Torsional bearing capacity of composite bucket foundation in silty sand[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 270-278. (in Chinese) doi: 10.19912/j.0254-0096.tynxb.2019-0870 [10] LIU R, YUAN Y, FU D F, et al. Numerical investigation to the cyclic loading effect on capacities of the offshore embedded circular foundation in clay[J]. Applied Ocean Research, 2022, 119: 103022. doi: 10.1016/j.apor.2021.103022 [11] 杜杰, 丁红岩, 刘建辉, 等. 筒型基础有限元分析的土体边界选取研究[J]. 海洋技术,2005,24(2):109-113 DU Jie, DING Hongyan, LIU Jianhui, et al. Research on boundary selection of soil of bucket foundation with finite element analysis[J]. Ocean Technology, 2005, 24(2): 109-113. (in Chinese) [12] 马鹏程, 刘润, 张浦阳, 等. 黏土中宽浅式筒型基础筒土协同承载模式研究[J]. 土木工程学报,2019,52(4):88-97 doi: 10.15951/j.tmgcxb.2019.04.008 MA Pengcheng, LIU Run, ZHANG Puyang, et al. Bucket-soil cooperative bearing capacity analysis of shallow buried bucket foundation in clay[J]. China Civil Engineering Journal, 2019, 52(4): 88-97. (in Chinese) doi: 10.15951/j.tmgcxb.2019.04.008 [13] 刘永刚, 丁红岩, 张浦阳. 淤泥质黏土中复合筒型基础水平承载力试验研究[J]. 岩土工程学报,2016,38(12):2315-2321 doi: 10.11779/CJGE201612022 LIU Yonggang, DING Hongyan, ZHANG Puyang. Model tests on bearing capacity of composite bucket foundation in clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2315-2321. (in Chinese) doi: 10.11779/CJGE201612022 [14] 蒋敏敏, 蔡正银, 肖昭然, 等. 黏土中箱筒型基础防波堤静力失稳破坏模式和承载力研究[J]. 岩土工程学报,2020,42(4):642-649 JIANG Minmin, CAI Zhengyin, XIAO Zhaoran, et al. Failure modes and bearing capacity of composite bucket foundation breakwater in clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 642-649. (in Chinese) [15] 蔡正银, 王清山, 关云飞, 等. 分舱板对海上风电复合筒型基础承载特性的影响研究[J]. 岩土工程学报,2021,43(4):751-759 CAI Zhengyin, WANG Qingshan, GUAN Yunfei, et al. Influences of bulkheads on bearing characteristics of composite bucket foundation of offshore wind turbines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 751-759. (in Chinese) [16] YAN Z, FU D F, ZHANG B H, et al. Large-scale laboratory tests of a new type of bucket foundation in sand subjected to vertical loading[J]. Applied Ocean Research, 2020, 97: 102072. doi: 10.1016/j.apor.2020.102072 [17] 朱斌, 应盼盼, 邢月龙. 软土中吸力式桶形基础倾覆承载性能离心模型试验[J]. 岩土力学,2015,36(增刊1):247-252 doi: 10.16285/j.rsm.2015.S1.042 ZHU Bin, YING Panpan, XING Yuelong. Centrifuge model test on suction caisson foundation in soft clay subjected to lateral loads[J]. Rock and Soil Mechanics, 2015, 36(Suppl1): 247-252. (in Chinese) doi: 10.16285/j.rsm.2015.S1.042 [18] 周超, 寇海磊, 闫正余, 等. 砂土地基中箱筒型防波堤基础稳定性试验研究与机理分析[J]. 海洋工程,2021,39(6):47-56 doi: 10.16483/j.issn.1005-9865.2021.06.006 ZHOU Chao, KOU Hailei, YAN Zhengyu, et al. Experimental study and mechanism analysis on stability of box-and-barrel breakwater foundation in sandy soil[J]. The Ocean Engineering, 2021, 39(6): 47-56. (in Chinese) doi: 10.16483/j.issn.1005-9865.2021.06.006 [19] 汪嘉钰, 刘润, 陈广思, 等. 海上风电宽浅式筒型基础竖向极限承载力上限解[J]. 太阳能学报,2022,43(3):294-300 WANG Jiayu, LIU Run, CHEN Guangsi, et al. Upper bound solution limit analysis of vertical bearing capacity of shallow bucket foundation for offshore wind turbines[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 294-300. (in Chinese) [20] 杨立功, 蔡正银, 徐志峰. 新型桶式基础防波堤桶体阻力分析[J]. 岩土工程学报,2016,38(4):747-754 doi: 10.11779/CJGE201604021 YANG Ligong, CAI Zhengyin, XU Zhifeng. Numerical analysis of bucket resistance of new bucket foundation breakwater[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 747-754. (in Chinese) doi: 10.11779/CJGE201604021 [21] 蔡正银, 杨立功, 关云飞, 等. 新型桶式基础防波堤单桶桶壁土压力数值分析[J]. 水利水运工程学报,2016(5):39-46 doi: 10.16198/j.cnki.1009-640X.2016.05.006 CAI Zhengyin, YANG Ligong, GUAN Yunfei, et al. Numerical analysis of soil pressure on single bucket wall of new bucket foundation breakwater[J]. Hydro-Science and Engineering, 2016(5): 39-46. (in Chinese) doi: 10.16198/j.cnki.1009-640X.2016.05.006 [22] 李文轩, 曹永勇. 海上筒型基础的筒壁土压力计算[J]. 水利水运工程学报,2018(3):65-70 doi: 10.16198/j.cnki.1009-640X.2018.03.009 LI Wenxuan, CAO Yongyong. Earth pressure calculation for bucket wall of offshore bucket foundation[J]. Hydro-Science and Engineering, 2018(3): 65-70. (in Chinese) doi: 10.16198/j.cnki.1009-640X.2018.03.009 -