Study on change of friction in pile driving in interbedded soil
-
摘要: 准确确定打桩过程中的单位侧摩阻力,是提高桩基可打入性分析精度的重要途径。基于某互层土场地现场静力触探数据及高应变动测结果,分析打桩过程中单位侧摩阻力的变化规律。现场打桩全过程动测数据分析显示,与常规场地类似,在打桩过程中,同一深度的单位侧摩阻力随着贯入深度的增加而降低,总侧摩阻力表现出明显的衰减趋势;土体的互层分布对单位侧摩阻力随深度的变化趋势影响显著,表现为在砂土及粉土层中单位侧摩阻力也出现明显降低。现有的半理论半经验公式无法正确描述上述情况,对于互层土场地,建议黏土层可基于灵敏度确定折减因子,砂土和粉土宜采用与上层黏土相同的折减因子。采用该方法计算得到的单位侧摩阻与实测值基本吻合。该方法可用于互层土场地的打桩计算,提高桩基可打入性分析精度。Abstract: Accurately determining the unit friction in pile driving is very important for improving the accuracy of pile driveability analysis. Based on the in-situ cone penetration test data and high strain dynamic test results of an interbedded soil site, the change of unit friction during pile driving is studied. The results show that during the pile driving, although the total friction of pile keeps increasing with increment of penetration depth, and the total friction at the same penetration depth decreases, which is the same as that in ordinary site, the interlayered soil has a significant effect on the change of unit friction with depth. The results of analysis shows that the unit friction also decreases significantly in sand layer and silt layer in the interlayered site, which could not be described correctly with the existing semi theoretical method. In view of this, a calculation method of reduction factor in clay based on sensitivity is proposed. At the same time, it is pointed out that the same reduction factor as that of clay should be used for sandy layer and silt layer for the interlayered soil. The unit friction obtained by the proposed method is basically consistent with the measured value. The proposed method could be used in practice to improve accuracy of pile diveability analysis in an interbedded soil site.
-
Key words:
- steel-pipe pile /
- pile driving /
- cone penetration test /
- unit shaft
-
表 1 土层分布及桩基设计参数
Table 1. Distribution of soil layers and pile design parameters
层位 深度/m 土质描述 浮重度/(kN/m3) 不排水强度/kPa 桩土之间的外摩擦角/° 1 0~5.2 黏土和粉质黏土 7.5 2~24 2 5.2~9.2 砂质粉土与粉质黏土互层 9.4 20 3 9.2~11.6 砂质粉土 9.0 20 4 11.6~13.6 粉质黏土 8.4 40 5 13.6~20.5 粉质细砂 9.5 30 6 20.5~23.0 粉质黏土 10.0 80 7 23.0~26.0 砂质粉土 9.2 20 8 26.0~32.5 粉质黏土 9.3 90 9 32.5~37.8 砂质粉土和粉质细砂 9.4 25 10 37.8~45.3 粉质黏土 9.9 95~130 11 45.3~47.8 砂质粉土 9.2 25 12 47.8~58.5 粉质细砂 9.5 30 13 58.5~60.5 粉质黏土 9.8 160 14 60.5~64.0 黏土和粉质黏土 9.1 25 15 64.0~67.8 粉质细砂 10.3 160~200 16 67.8~69.4 粉质黏土 9.5 30 17 69.4~72.2 粉质细砂 9.7 170~190 18 72.2~76.2 粉质黏土 9.4 25 19 76.2~79.5 粉土和砂质粉土 10.0 30 20 79.5~87.9 粉质细砂 9.8 240 21 87.9~94.1 粉质黏土 9.8 20° 22 94.1~96.0 粉质细砂和砂质粉土 9.8 320 -
[1] 徐保照, 李飒, 夏玲晓, 等. 不同安装法对管桩桩周土影响的有限元分析[J]. 水利水运工程学报,2015(2):38-43 doi: 10.16198/j.cnki.1009-640X.2015.02.006 XU Baozhao, LI Sa, XIA Lingxiao, et al. Numerical simulation analysis of driving methods affecting soil around pipe pile[J]. Hydro-Science and Engineering, 2015(2): 38-43. (in Chinese) doi: 10.16198/j.cnki.1009-640X.2015.02.006 [2] STEVENS R S, WILTSIE E A. TURTON T H. Evaluating pile drivability for hard clay, very dense sand, and rock[C]//Offshore Technology Conference. Houston, Texas, 1982. [3] SEMPLE R M, GEMEINHARDT J P. Stress history approach to analysis of soil resistance to pile driving[C]//Offshore Technology Conference. Houston, Texas, 1981. [4] 康思伟, 贾志远. 利用CPT结果进行可打入性分析[J]. 中国港湾建设,2016,36(10):36-39,43 doi: 10.7640/zggwjs201610008 KANG Siwei, JIA Zhiyuan. Pile driveability analysis by using CPT results[J]. China Harbour Engineering, 2016, 36(10): 36-39,43. (in Chinese) doi: 10.7640/zggwjs201610008 [5] 宋玉鹏, 宋丙辉, 孙永福, 等. 海洋静力触探在海上平台桩基承载力计算中的应用[J]. 工程地质学报,2021,29(6):1942-1948 doi: 10.13544/j.cnki.jeg.2021-0004 SONG Yupeng, SONG Binghui, SUN Yongfu, et al. Application of seabed cone penetration test in calculation of bearing capacity of pile foundation of offshore platform[J]. Journal of Engineering Geology, 2021, 29(6): 1942-1948. (in Chinese) doi: 10.13544/j.cnki.jeg.2021-0004 [6] American Petroleum Institute. Recommended practice for planning. designing and constructing fixed offshore platforms-working stress design: API RP 2A-WSD[S]. USA: API Publishing Services, 2007. [7] JARDINE R, CHOW F, STANDING J, et al. ICP design methods for driven piles in sands and clays[M]. London: Thomas Telford Publishing, 2005. [8] LEHANE B M, SCHNEIDER J A, XU X. A review of design methods for offshore driven piles in siliceous sand[C]∥Frontiers in Offshore Geotechnics. Perth: Taylor & Francis Group, 2005. [9] ALM T, HAMRE L. Soil model for pile driveability predictions based on CPT interpretations[J]. International Conference on Soil Mechanics and Geotechnical Engineering, 2001: 1297-1302. [10] VAN DIJK B F J, KOLK H J. CPT-based design method for axial capacity of offshore piles in clays[C]∥Proceedings of the Frontiers in Offshore Geotechnics II. London: Taylor and Francis Group, 2011. [11] PRENDERGAST L J, GANDINA P, GAVIN K. Factors influencing the prediction of pile driveability using cpt-based approaches[EB/OL]. (2020-12-01)[2022-07-01]. https:∥www.mdpi.com/1996-1073/13/12/3128/html. [12] RAUSCHE F, MOSES F, GOBLE G G. Soil resistance predictions from pile dynamics[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(9): 917-937. doi: 10.1061/JSFEAQ.0001781 [13] SCHNEIDER J A, HARMON I A. Analyzing drivability of open ended piles in very dense sands[J]. DFI Journal the Journal of the Deep Foundations Institute, 2010, 4(1): 32-44. doi: 10.1179/dfi.2010.003 [14] SVINKIN M R. High-strain dynamic pile testing—problems and pitfalls[J]. Journal of Performance of Constructed Facilities, 2010, 24(2): 99. doi: 10.1061/(ASCE)CF.1943-5509.0000105 [15] LIKINS G, ROBINSON B, PISCSALKO G. A brief overview of testing of deep foundations[EB/OL]. (2012-09-01)[2022-07-01]. http:∥www.grlengineers.com/wp-content/uploads/2012/09/001. [16] 赵亮, 闫澍旺, 樊之夏, 等. 高应变动测技术在海洋石油平台桩基工程中的应用研究[J]. 工程力学,2011,28(5):219-225 ZHAO Liang, YAN Shuwang, FAN Zhixia, et al. On the application of high strain testing in pile driving of offshore platform[J]. Engineering Mechanics, 2011, 28(5): 219-225. (in Chinese) [17] 韩亮. CAPWAP操作手册[EB/OL]. (2015-01-30)[2022-07-01]. https:∥www.docin.com/p-1046607217.html. HAN Liang. Manual of CAPWAP[EB/OL]. (2015-01-30)[2022-07-01]. https:∥www.docin.com/p-1046607217.html. (in Chinese) [18] 徐攸在, 刘兴满. 桩的动测新技术[M]. 北京: 中国建筑工业出版社, 1989. XU Youzai, LIU Xingman. New technology for dynamic test of pile[M]. Beijing: China Architecture & Building Press, 1989. (in Chinese) [19] Det Norske Veritas. Geotechnical design and installation of suction anchors in clay: DNV RP E303[S]. Norway: DNV, 2005. [20] ROBERTSON P K, CABAL K. Guide to cone penetration testing for geotechnical engineering[M]. California: Gregg Drilling & Testing, Inc. , 2014. -